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Abstract—The paper addresses distributed multitarget track-
ing over a peer-to-peer network of sensors with limited tar-
get observability. It is shown how to extend the Cheap Joint
Probabilistic Data Association (CJPDA) filter to this setting by
devising suitable distributed, consensus-based, procedures for
track initiation and track fusion. The resulting, association-
based, Distributed-CJPDA (D-CJPDA) tracker is then compared
to a previously proposed random set approach for the same
problem based on the Gaussian Mixture Cardinalized Probability
Hypothesis Density (CPHD) filter.

I. INTRODUCTION

The problem of detecting and tracking moving objects
within a certain area of interest, known as multitarget track-
ing [1]-[7], is of paramount importance in many defence,
civilian and security applications. The widespread use of
sensor networks for surveillance and monitoring purposes
has recently attracted growing interest towards distributed
multitarget tracking [4, chapter 8], [8]-[12]. Major attention
has been focused on centralized or hierarchical architectures
[8], [9], [10] wherein one or multiple fusion nodes receive
data from lower-level sensor nodes, combine them and deliver
results to the users. In many circumstances, however, it is
preferable to adopt the peer-to-peer (P2P) paradigm according
to which all nodes of the network are at the same level,
acting at the same time as sensors, fusion nodes and users.
Each node (peer) aims to detect and estimate the states of all
targets in the surveillance region by processing local sensor
measurements, exchanging data with the neighbors, and fusing
local information with information from the neighbors. On
one hand, P2P architectures provide significant advantages
in terms of scalability, fault tolerance, energy efficiency and
prolonged network lifetime but, on the other hand, they pose
challenges on target detection and tracking in presence of
nodes with limited observability. In fact, a node with limited
observability has not sufficient information to initiate and
update a target track and must, therefore, rely on cooperation
with the neighboring nodes in order to properly accomplish
these tasks. A first contribution on distributed P2P multitarget
tracking, based on the random set approach, can be found in
[11]. Specifically, [11] introduced a distributed P2P random-
set tracker, named Consensus Gaussian Mixture - Cardinalized
Probability Hypothesis Density (CGM-CPHD) filter. Recall
that the CPHD filter propagates in time multitarget statistics
in terms of both the discrete probability distribution of the

number of targets (cardinality distribution) and the continuous
probability distribution of such targets over the state space
(location distribution), by exploiting a random set multitarget
multisensor model which embeds target birth and death as well
as missed detections and false alarms. In particular, the GM-
CPHD filter represents the location distribution as a Gaussian
mixture. In the CGM-CPHD, each node runs a local GM-
CPHD filter to update its cardinality and location distributions
with the local measurements and then performs consensus
(repeated fusion) [13] with the neighbors in order to spread
information across the network.

The aim of the present paper is to tackle the distributed
P2P multitarget tracking problem from a different, association-
based, perspective. In this respect, a new distributed P2P
tracker based on Joint Probabilistic Data Association (JPDA)
is developed and will be referred to hereafter as Distributed -
Cheap JPDA (D-CJPDA). D-CJPDA employs a CJPDA filter
[14] in each peer node for updating the local set of tracks with
the measurements available “in situ” and exploits cooperation
among neighboring peers in two ways, i.e., (1) to initiate
new tracks and (2) to associate and fuse tracks of different
peers. More specifically, a distributed procedure is devised
for initiating target tracks whenever the individual peers are
characterised by limited target observability. The idea is to
spatially discretize the surveillance region into a finite number
of cells and to associate, to each cell, a target birth probability.
Then, such a discrete birth probability distribution is updated
in each peer with the locally unassociated measurements and
undergoes a consensus procedure with the neighboring peers;
target tracks are finally initiated from the peaks of the target
birth distribution resulting from consensus. A further key
ingredient of D-CJPDA is a distributed association-based track
fusion procedure by which each node performs pairwise track-
to-track associations with the neighbors followed by fusion of
the associated tracks.

The paper is organised as follows. Section II introduces
the P2P distributed multitarget tracking problem, the P2P
network model and some notation. Section III presents the
new, association-based, D-CJPDA distributed P2P multitarget
tracker. Section III briefly reviews the random set CGM-CPHD
tracker presented in [11]. Section IV provides a comparative
performance evaluation of the two trackers. Concluding re-
marks and perspectives for future work are in section V.



II. PROBLEM SETTING AND NOTATION

This work considers multitarget tracking over a network of
heterogeneous and non co-located nodes with sensing, pro-
cessing and communication capabilities. It is assumed that the
network operates in a P2P fashion, i.e. the nodes (peers) have
no hierarchical organisation acting at the same time as sensing
devices, information processors and information users. More
specifically, each peer aims to get situation awareness (i.e., as
accurate as possible knowledge at each time of the number,
positions and velocities of targets within the surveillance area)
by processing the local measurements and the information
from the neighbors.

Mathematically, the network will be characterized by a
directed communication graph (N ,A) where N is the set
of nodes and A ⊆ N × N the set of arcs, representing
links (connections). In particular, (j, i) belongs to A whenever
node i can receive from node j. For each node i ∈ N ,
Ni = {j ∈ N : j 6= i and (j, i) ∈ A} will denote the set
of in-neighbors of node i.

For notational simplicity, time dependence of quantities will
be omitted throughout the paper. Hence, it will be implicitly
assumed that all quantities pertain to the same sampling instant
tk while quantities relative to the subsequent instant tk+1 will
have a + superscript, e.g. x and x+ will denote xk and,
respectively, xk+1. The notation G (·; x̂, P ) will denote the
Gaussian probability density function (PDF) with mean x̂ and
covariance P .

III. DISTRIBUTED CJPDA FILTER

This approach runs a local CJPDA tracker in each node
of the network and exploits cooperation with the neighbors
for track management. The overall Distributed-CJPDA
(D-CJPDA) tracker is schematized in the block-diagram of
Fig. 1. At each sampling interval, the local tracker of sensor
node i inputs the set of measurements Yi and manages (i.e.
initiates, updates, terminates) target tracks as described in the
sequel. Let us assume that, at the beginning of the sampling
interval, the set of tracks (either preliminary or confirmed)
Ti be available at node i and that each track j ∈ Ti be
characterized by the filtered state estimate x̂ij and relative
covariance Pij .

Track prediction - Exploiting the selected target motion
model, each track (x̂ij , Pij) is one-step-ahead predicted to
get
(
x̂+ij , P

+
ij

)
.

Measurement-to-track association - An association
gate is set around the predicted measurement of each track(
x̂+ij , P

+
ij

)
and the subset Yij ⊆ Yi of measurements falling

within the gate is associated to track j.

Distributed track initiation - A sensible approach to
track initiation is to update a prior birth intensity defined
over the surveillance area by means of the unassociated
observations (which, presumably, provide useful information

on new targets) and then initialize new tracks originating from
the peaks of such a birth intensity. For each node i, let

Y i = Yi \
⋃
j∈Ti

Yij (1)

denote the set of unassociated measurements. For computa-
tional simplicity, a spatially discretized approach [15]-[18] is
adopted. To this end, let us assume that the surveillance area Z
be partitioned into disjoint cells (bins) as Z = ∪m∈MZm with
M = {1, . . . ,M}. Let bim denote the birth probability in cell
m ∈M computed by node i on the basis of measurements Y i

and bm the prior birth probability in cell m. Then, following
the update (correction) step of the bin-occupancy filter [18],
such probabilities are updated as follows

b′im = (1− Pd,m) bm +
∑
y∈Y i

Pd,m `i (zm, y) bm

cm +
∑

m∈M
Pd,m `i(zm, y) bm

bim =
b′im(∑

m∈M b′im
) (2)

where: zm = [ξm, ηm]> is the position of the center of
Zm; Pd,m is the detection probability in cell m; cm is the
clutter probability in cell m; the likelihood `i(·, ·) is defined
as follows

`i (z, y) = exp

[
−1

2
(y − hi(z))T R−1i (y − hi(z))

]
, (3)

hi(·) and Ri being the measurement function and, respectively,
measurement noise covariance of position sensor i. Recalling
that, in the limit for the cell dimension going to zero, the bin-
occupancy filter tends to the PHD filter [18], the quantities
bim can be interpreted as a discrete-space location density of
newborn targets. Notice that the density is normalized to 1
since, in the proposed algorithm, only the location information
is used for track initiation.

Due to the possible presence of sensors with incomplete ob-
servability, however, track initiation needs cooperation among
nodes. In this respect, the idea is to carry out consensus among
the neighbors so as to spread birth probability information
across the network. In fact, consensus has emerged as a
convenient tool for distributed computation (e.g. averaging,
minimization, maximization) over networks [19], [20] and
has been widely used in distributed parameter/state estimation
algorithms (see [13] and the references therein). In its basic
form, a consensus algorithm updates, in each network node,
the local information by averaging it with the information
coming from the neighbors, i.e., by computing a regional
average. The same operation is then repeated with the ob-
jective that all the network nodes reach an agreement about
the information of interest. Convergence results of consensus
algorithms, depending on the consensus weights, can be found
in [19], [20].

In the present context, the information is represented by the
discrete-space location densities bim, i ∈ N . As discussed in
[11], [12], [21], a theoretically-sound way for fusing location
densities consists of computing their normalized geometric
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Fig. 1. Block-diagram of the distributed CJPDAF tracker

mean. Accordingly, in the proposed approach, each node i
performs a given number of consensus iterations of the form

bim ← bωii
im

∏
k∈Ni

bωik

km , bim ← bim

(∑
l∈M

bil

)−1
(4)

where the consensus weights satisfy

ωik ≥ 0, ωii +
∑
k∈Ni

ωik = 1 (5)

Then, node i initializes preliminary tracks in the local maxima
(peaks) of the resulting birth location density {bim}m∈M.

The use of a PHD-like representation to aid initiation of
tracks using a JPDA-like algorithm has also been studied
recently in [22].

Track correction via CJPDA filtering - Exploiting the
associated measurements Yij , each (preliminary or confirmed)
track

(
x̂+ij , P

+
ij

)
is updated by means of a local JPDA filter [3],

[23], [24] to get (x̂ij , Pij). For computational simplicity, the
CJPDA algorithm [14], in which the association probabilities
are computed in an approximate way, is actually used.

Track-to-track association - Only the subsets of con-
firmed tracks T i ⊆ Ti undergo track-to-track association

among neighboring nodes. To avoid the combinatorial com-
plexity of n-dimensional (n > 2) assignment, pairwise asso-
ciations are considered. Let k ∈ Ni be a neighbor of node i,
then association between T i and T k is carried out by solving
the following 2−D assignment problem

min
ajl∈{0,1}

∑
j∈T i∪{0}

∑
l∈T k∪{0}

ajl cjl

subject to


∑

j∈T i∪{0}

ajl = 1, ∀l ∈ T k∑
l∈T k∪{0}

ajl = 1, ∀j ∈ T i

(6)

where: the association costs cjl are defined as in [5, p. 631];
a virtual track 0 has been joined to both T i and T k in order
to allow a track j of node i not to be associated to any track
l of node k and viceversa. The optimisation problem (6) can
be solved in polynomial time by means of the Hungarian
algorithm [25], [26].

Track fusion - Associated tracks need to be fused. This
can be done in many different ways, either in one shot at the
end of all pairwise track-to-track associations between neigh-
bors or sequentially, i.e. neighbor by neighbor. A sequential



approach, detailed in Table I, is adopted in this paper. Track-
to-track association between node i and a neighbor k ∈ Ni

is performed and then the associated tracks are fused via
covariance intersection [27]. The procedure is repeated with
the fused tracks of node i and another neighbor, until all
neighbors have been processed. Whenever a track of node
i remains unassociated, it is discarded from the subsequent
associations-fusions. Finally, only the subset T̃i ⊆ T i of tracks
associated and fused with all neighbors are actually displayed,
whereas the remaining tracks are kept for the subsequent
sampling intervals.

While track-to-track association and fusion are performed
sequentially, the pairwise combination weights are chosen so
that the resulting fused tracks are obtained via covariance
intersection from the original local tracks. In particular, it can
be seen that the algorithm of Table I results in the following
substitutions

P ′ij =

(
ωiiP

−1
ij +

∑
k∈Ni

ωikP
−1
k lik(j)

)−1

x̂′ij = P ′ij

(
ωiiP

−1
ij x̂ij +

∑
k∈Ni

ωikP
−1
k lik(j)

x̂k lik(j)

)
Pij = P ′ij , x̂ij = x̂′ij (7)

for any j ∈ T̃i, where lik(j) indicates the index of the track
of node k associated with track j of node i.

TABLE I
SEQUENTIAL TRACK FUSION

N i = Ni; P 0
ij = Pij ; x̂0

ij = x̂ij ; T̃i = T i;
Pij ←− ω−1

ii Pij , ∀j ∈ T i;
while N i 6= ∅ do

choose k ∈ N i

perform track-to-track association between T̃i and T k

for any track j ∈ T̃i
find l such that ajl = 1
if l > 0 then

P ′ij =
[
P−1
ij + ωikP

−1
kl

]−1
;

x̂′ij = P ′ij

[
P−1
ij x̂ij + ωikP

−1
kl x̂kl

]
;

Pij = P ′ij ; x̂ij = x̂′ij ;
if l = 0 then
T̃i = T̃i\{j};
x̂ij = x̂0

ij ;
Pij = P 0

ij ;
end for
N i = N i\{k};

end while

Track confirmation and termination - Although also
the confirmation of preliminary tracks and the termination of
confirmed tracks might benefit from the adoption of distributed
cooperative strategies, the currently implemented solution re-
lies on simple local methods. Specifically, M/N logic [1, pp.
203-221] is exploited for track confirmation, while termination
of track j in node i is performed whenever at least one of the

following conditions occurs: 1) track j has been associated to
no measurement, i.e. Yij has been empty, for a given number
of consecutive sampling intervals; 2) the track covariance trace
tr Pij exceeds a given threshold; 3) track j has not been
associated to all neighbors, i.e. j ∈ T i\T̃i, for a given number
of consecutive sampling intervals.

IV. CONSENSUS CPHD FILTER

CGM-CPHD propagates, in each node i of the net-
work, the target cardinality PMF (Probability Mass Function)
{pi(n)}nmax

n=0 and the PHD function

di(x) = ni si(x) (8)

where ni =
∑

n np(n) is the expected number of targets and
the PDF si(·) is the location density represented as a Gaussian
Mixture, i.e.

si(x) =

Mi∑
j=1

αij G (x; x̂ij , Pij) , αij > 0,

Mi∑
j=1

αij = 1 (9)

At each sampling interval, a GM-CPHD filter locally updates
{pi(n)}nmax

n=0 and {αij , x̂ij , Pij}Mi

j=1, exploiting the measure-
ments Yi and a random set evolution model incorporating
target birth and death as well as clutter generation. Then,
consensus takes place in each node i involving the subnetwork
Ni. Specifically, each node i receives the cardinality PMF
{pk(n)}nmax

n=0 and the GM parameters {αkj , x̂kj , Pkj}Mk

j=1 of
the location density from the neighbors k ∈ Ni and then fuses
such information [28], repeating the procedure for a given
number L of consensus iterations. The theoretical foundations
and algorithmic details can be found in [11].

V. SIMULATION EXPERIMENTS

This section develops a performance comparison between
two distributed P2P multi target trackers: CGM-CPHD pro-
posed in [11] and briefly reviewed in section III and D-CJPDA
proposed in this paper (see section II). To this end, a 2-
dimensional (planar) multitarget tracking scenario is consid-
ered over a surveillance area of 50 × 50[km2], wherein the
sensor network of Fig. 2 is deployed. The scenario involves 5
targets as depicted in Fig. 3.

The target state is denoted by x =
[
ξ, ξ̇, η, η̇

]T
where

(ξ, η) and (ξ̇, η̇) represent the target Cartesian position and,
respectively, velocity components. The motion of targets is
modeled by the filters according to the nearly-constant velocity
model:

x+ =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

x+ w (10)

where w is a zero-mean white noise process with covariance

Q = σ2
w


1
4T

4
s

1
2T

3
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1
2T

3
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0 0 1

4T
4
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s T 2

s

 , (11)
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Fig. 3. Target trajectories considered in the simulation experiment. The
start/end point for each trajectory is denoted, respectively, by a bullet/square.

σw = 2[m/s2] and the sampling interval is Ts = 5[s].
As it can be seen from Fig. 2, the sensor network considered

in the simulation consists of 4 range-only (TOA = Time Of
Arrival) and 3 bearing-only (DOA = Direction Of Arrival)
sensors characterized by the following measurement functions:

hi(x) =


∠[(ξ − ξi) + j (η − ηi)], DOA√
(ξ − ξi)2 + (η − ηi)2, TOA

(12)

where (ξi, ηi) represents the known position of sensor i. The
standard deviation of DOA and TOA measurement noises are
respectively σDOA = 1[◦] and σTOA = 100[m]. Because of
the non linearity of the aforementioned sensors, the Unscented
Kalman Filter (UKF) [29], [30] is exploited in each sensor
to update means and covariances, of either the Gaussian
components in the CGM-CPHD or the target tracks in the
D-CJPDA .

Clutter is modeled as a Poisson Process with parameter
λc = 5 and uniform spatial distribution over the surveillance
area; the probability of target detection is Pd = 0.9.

In the considered scenario, targets travel through the surveil-
lance area with no prior information for target birth locations.
The following parameters (see [11] for their definitions) have
been selected for CGM-CPHD: number of Gaussian compo-
nents of the birth intensity Nb = 40 and weight of such
components α = 1.5 10−3; target survival probability Ps =
0.99; maximum number of Gaussian components Nmax = 25;
merging threshold γm = 9; truncation threshold γt = 10−4;
extraction threshold γe = 0.5

Conversely, for D-CJPDA a 50×50 grid of 1×1 [km2] cells
has been adopted for target initiation. Further the following
parameters have been chosen: M = 4 and N = 7 for the M/N
track confirmation logic; validation gate threshold γv = 8;
gate threshold for the track-to-track association γf = 15. The
consensus weights used in (4) and (7) have been chosen as
uniform, i.e. ωik = (|Ni|+ 1)

−1 for any k ∈ Ni ∪ {i}.
Multitarget tracking performance is evaluated in terms of
estimated number of targets as well as the OSPA (Optimal
SubPattern Analysis) metric [31].
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The reported metrics are averaged over all nodes and Nmc =
200 Monte Carlo trials for the same target trajectories but
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different, independently generated, clutter and measurement
noise realizations. The duration of each simulation trial is fixed
to 500[s] (100 samples). Figs. 4 and 5 compare the estimated
number of targets and, respectively, OSPA (with Euclidean
distance, p = 2, and cutoff parameter c = 600) for both D-
CJPDA and CGM-CPHD trackers. Please notice that, for D-
CJPDA, the estimated cardinality plotted in Fig. 4 is actually
the number of tracks sent to track display (Fig. 1), i.e. the
confirmed tracks that are associated to all neighbors. From
the examination of Figs. 4 and 5, the following considerations
are in order.
• D-CJPDA tends to overestimate the number of targets,

i.e. to create more easily clutter-originated false tracks,
while CGM-CPHD is more prone to underestimation of
the target number (see Fig. 4).

• D-CJPDA is less reactive than CGM-CPHD to display
new-born targets (see Fig. 4). This is due, besides the
intrinsic delay of the M/N confirmation logic, also to
the fact that, in the current implementation, each node
displays only the confirmed tracks that are associated to
all neighbors.

• In terms of OSPA (see Fig. 5) CGM-CPHD, for L = 3
consensus steps, provides the best performance but also
D-CJPDA exhibits a good behaviour (much better than
CGM-CPHD with a single consensus step), except for
the unavoidable peaks due to the changes of cardinality.

To demonstrate the effectiveness of the proposed distributed
track initiation procedure, Figs. 6-9 display the birth proba-
bilities b1m at node 1 (see Fig. 2) at the initial time instant
(whenever there are three targets in the surveillance area)
respectively before consensus and after the first, second and
third consensus iteration. As it can be seen, at the end of the
consensus procedure the three simulated targets are detected
in the cells corresponding to their true initial positions.

A theoretical evaluation of the computational complexity of
D-CJPDA and CGM-CPHD trackers is difficult to carry out.
The considered implementations of both trackers have been
run on the same computer and simulation scenario and it has
been found that D-CJPDA required an average computation
time roughly 2÷ 3 times faster than CGM-CPHD.

VI. CONCLUSIONS

The paper has presented a novel approach, named
Distributed-CJPDA (D-CJPDA), to distributed multitarget
tracking over a peer-to-peer network of sensors with limited
target observability. D-CJPDA relies on local Cheap Joint
Probabilistic Data Association filters running in each peer
node, as well as on a consensus procedure for distributed
track initiation and association-based track fusion. Simula-
tion experiments have demonstrated good performance of D-
CJPDA, also in comparison with a previously introduced
distributed peer-to-peer multitarget tracker based on random



set theory [11]. Future work will try to improve D-CJPDA
in several ways, e.g. considering distributed track confirma-
tion/termination and adopting a majority consensus strategy
(instead of the currently employed strategy that requires una-
nimity) in the association-based track fusion.
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