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Abstract— This paper addresses state estimation for spatially
distributed systems governed by linear partial differential
equations from discrete in-space-and-time noisy measurements
provided by sensors deployed over the spatial domain of
interest. A decentralised and scalable approach is undertaken
by decomposing the domain into overlapping subdomains
assigned to different processing nodes interconnected to form a
network. Each node runs a local finite-dimensional Kalman
filter which exploits the finite element approach for spatial
discretisation and the parallel Schwarz method to iteratively
enforce consensus on the estimates and covariances over the
boundaries of adjacent subdomains. The effectiveness of the
proposed distributed consensus-based finite element Kalman
filter is demonstrated via simulation experiments concern-
ing a temperature estimation problem modelled by the bi-
dimensional heat equation.

Keywords: networked state estimation; distributed-
parameter systems; finite element method; Kalman filtering;
consensus.

I. INTRODUCTION

Recent advances in wireless sensor network technology
make possible to perform cost-effective monitoring of spa-
tially distributed systems by deploying multiple sensors over
the area to be monitored. This clearly has several important
practical applications including, e.g., weather forecasting,
water flow and fire monitoring, monitoring of pollutants.
The problem of fusing data from different sensors can be
accomplished either in a centralised way, i.e. when there is
a single fusion center collecting data from all sensors and
taking care of the overall spatial domain of interest, or in
distributed (decentralised) fashion with multiple intercom-
municating fusion centres (nodes) each of which can only
access part of the sensor data and take care of a smaller
region of the overall domain. The decentralised approach is
clearly preferable in terms of scalability of computation with
respect to the problem size and will be, therefore, pursued
in this paper.

Since spatially distributed processes are typically modelled
by infinite-dimensional systems, described by partial differ-
ential equations (PDEs), distributed state estimation for such
systems represents a key issue to be addressed. While great
attention has been devoted to distributed consensus-type fil-
ters for finite-dimensional, both linear and nonlinear, systems
[1]-[5] and for multitarget tracking [6], considerably less
work is available on the more difficult case of distributed-
parameter systems. Important contributions on the topic can

be found in the work of Demetriou [7]-[8] which presents
consensus filters for distributed-parameter systems wherein
each node of the network aims to estimate the system state
on the whole spatial domain of interest.

In the present paper, a different framework is considered
wherein each node is only responsible for estimating the state
over a smaller region in the neighbourhood of the node. This
setup allows for a solution which is scalable with respect
to the spatial domain (i.e., the computational complexity in
each node does not depend on the size of the whole spatial
domain but only of its region of competence). In this context,
the contribution of the present paper is essentially in two di-
rections. First, we develop scalable consensus filters by suit-
ably adapting the so called Schwarz domain decomposition
methods [9]-[14], originally conceived to solve a boundary
value problem by splitting it into smaller subproblems on
subdomains and iterating to achieve consensus among the
solutions on adjacent subdomains. Secondly, we exploit the
finite element (FE) method [15]-[17] in order to approximate
the original infinite-dimensional filtering problem into a, pos-
sibly large-scale, finite-dimensional one. Combining these
two ingredients, we propose a novel distributed finite element
Kalman filter which generalises to the more challenging
distributed case previous work on FE Kalman filtering [18].

The paper is organised as follows. Section II introduces
the basic notation and problem formulation. Then Section III
presents the centralised FE Kalman filter and subsequently
section IV shows how to extend such a filter to the distributed
setting by means of parallel Schwarz consensus. Section V
demonstrates the effectiveness of the proposed distributed
FE Kalman filter via numerical examples related to the
estimation of a bi-dimensional temperature field. Finally,
section VI ends the paper with concluding remarks.

II. PROBLEM FORMULATION

This paper addresses the estimation of a scalar, time-and-
space-dependent, field of interest from given discrete, in
both time and space, measurements related to such a field
provided by multiple sensors placed within the domain of
interest. The scalar field to be estimated x (p, t) is defined
over the space-time domain Ω × IR+, as the solution of a
partial differential equation (PDE) of the form

∂x

∂t
+A(x) = f (1)
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with (possibly unknown) initial condition x (p, 0) = x0(p),
p ∈ Ω, and homogeneous boundary conditions

B(x) = 0 on ∂Ω . (2)

The space domain Ω is supposed to be bounded and with
smooth boundary ∂Ω.

The measurements

yq,i = hi (x (si, tq)) + vq,i (3)

are provided by sensors i ∈ S 4
= {1, . . . , S}, located at

positions si ∈ Ω, at discrete sampling instants tq , q ∈
Z+ = {1, 2, . . . }, such that 0 < t1 < t2 < · · · . In (1)-(3):
p ∈ Ω denotes the d-dimensional (d ∈ {1, 2, 3}) position
vector; A(·) and B(·) are linear operators over a suitable
Hilbert space V , with A(·) self-adjoint and coercive; f (p, t)
is a forcing term possibly affected by process noise; hi(·)
is the measurement function of sensor i; vq,1, . . . , vq,N are
mutually independent white measurement noise sequences,
also independent from the initial state x0(p) = x (p, 0) for
any p ∈ Ω.

More precisely, the aim is to estimate x(p, t) given the
information set Y t 4= {yq,i,∀i ∈ S and ∀q : tq ≤ t}. This is
clearly an infinite-dimensional filtering problem. In the next
section, it will be shown how it can be approximated into
a finite-dimensional filtering problem by exploiting the FE
method [15]-[16].

An example of the above general problem is the estimation
of the temperature field x over the spatial domain of interest
given point measurements of temperature sensors. In this
case, V is usually taken as the Sobolev space H1(Ω),
the measurement function is simply h(x) = x, while the
PDE (1) reduces to the well known heat equation with
A(x) = −∇ · (λ∇(x)) and B(x) = α∂x/∂n + βx with
α(p)β(p) ≥ 0, α(p) + β(p) > 0, ∀p ∈ ∂Ω. Here λ(p) is
the thermal diffusivity, · stands for scalar product, ∇ 4= ∂/∂p
denotes the gradient operator, n is the outward pointing unit
normal vector of the boundary ∂Ω, and ∂x/∂n = ∇x · n.
Clearly, when the thermal diffusivity is space-independent,
one has A(x) = −λ∇2(x), where ∇2 = ∇ · ∇ is the
Laplacian operator.

Notice that considering homogeneous boundary conditions
as in (2) is not restrictive, since the non-homogeneous case
B(x) = g on ∂Ω can be subsumed into the homogeneous
one by means of the change of variables z = x− w, where
w is any function belonging to V and satisfying the non-
homogeneous boundary conditions.

III. CENTRALISED FINITE ELEMENT KALMAN FILTER

In this section, it is shown how to approximate the
continuous-time infinite-dimensional system (1) into a
discrete-time finite-dimensional linear dynamical system
within the FE framework.

By subdividing the domain Ω into a suitable set of non
overlapping regions, or elements, and by defining a suitable
set of basis functions φj(p) ∈ V (j = 1, . . . , n) on them, it is

possible to write an approximation of the unknown function
x(p, t) as

x(p, t) =

n∑
j=1

φj(p)xj(t) = φT (p)x(t) (4)

where: xj(t) is the unknown expansion coefficient of func-
tion x(p, t) relative to time t and basis function φj(p);
φ(p)

4
= col{φj(p)}nj=1 and x(t)

4
= col{xj(t)}nj=1.

The choices of the basis functions φj and of the elements
are key points of the FE method. Typically, the elements
(triangles or quadrilaterals in 2D, polyhedral in 3D) define
a FE mesh with vertices pj ∈ Ω, j = 1, . . . , n. Then each
basis function φj is a piece-wise polynomial which vanishes
outside the FEs around pj and such that φj(pi) = δij , δij
denoting the Kronecker delta.

Exploiting (4) in (1), applying the Galerkin weighted
residual method, and thanks to the linearity of operator A(·)
the usual FE weak form is obtained [15]-[16][∫

Ω

φ(p)φT (p)dp

]
︸ ︷︷ ︸

M

ẋ(t) +

[∫
Ω

φ(p) [A (φ(p))]
T
dp

]
︸ ︷︷ ︸

−S

x(t)

=

∫
Ω

φ(p)f(p, t)dp︸ ︷︷ ︸
u(t)

(5)
where A (φ)

4
= col {A(φj)}nj=1. It is evident how the first

two integrals in (5) depend only on basis functions and can
be computed a priori. In particular, the first integral yields
the well known mass matrix M, while the second depends
on the operator A(·) and, in the thermal case, is the stiffness
matrix S [15]. The third integral depends on the forcing
term f , which is assumed to be known, and can hence
be computed a priori, leading to a time dependent vector
contribution u(t). The resulting linear differential equation
Mẋ = Sx+u, where M turns out to be invertible by linear
independence of the basis functions φj(·), can be discretised
in time by different methods (e.g., backward or forward Euler
integration, or the zero-order-hold method) to provide the
discrete-time state-space model

xk+1 = Axk + Buk + wk (6)

where the process noise wk has been introduced to account
for the various uncertainties and/or imprecisions (e.g. FE
approximation, time discretisation, and imprecise knowledge
of boundary conditions). Specifically, the backward Euler
method (here adopted for stability issues) leads to a marching
in time FE implementation [17] which yields (6) with

A =
(
I−∆M−1S

)−1
, B = AM−1∆,

uk
4
= u((k + 1)∆),xk

4
= x(k∆) = col{xj(k∆)}nj=1

where ∆ denotes the time integration interval.
In the following, for the sake of notational simplicity, it

will be assumed that each sampling instant is a multiple of ∆,
i.e., tq = Tq∆ with Tq ∈ Z+, and we let T = {T1, T2, . . .};
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irregular sampling could, however, be easily dealt with. This
amounts to assuming that the numerical integration rate of
the PDE (1) in the filter can be higher than the measurement
collection rate, which can be useful in order to reduce the
numerical errors. In a centralised setting where all sensor
measurements are available to the filter, the measurement
equation (3) takes the discrete-time form

yk = h (xk) + vk (7)

for any k = Tq ∈ T , where

yk
4
= col {yq,i}i∈S , h (x)

4
= col

{
hi

(
φT (si)x

)}
i∈S

,

vk
4
= col {vq,i}i∈S

In particular, in the case wherein all sensors directly measure
the target field x, i.e. hi(x) = x for all i ∈ S , the
measurement equation (7) turns out to be linear with h(x) =
Cx, where

C = col
{
φT (si)

}
i∈S

(8)

Summarizing, the original infinite-dimensional continuous-
time problem has been reduced to a much simpler finite-
dimensional (possibly large-scale) discrete time filtering
problem (a linear one provided that all sensor measurement
functions are linear) to which the Kalman filter, or extended
Kalman filter when sensor nonlinearities are considered, can
be readily applied. The resulting centralised filter recursion
becomes:

x̂k|k =

{
x̂k|k−1 + Lk

(
yk − h

(
x̂k|k−1

))
if k ∈ T

x̂k|k−1 otherwise

Pk|k =

{
Pk|k−1 − LkC

T
kPk|k−1 if k ∈ T

Pk|k−1 otherwise
x̂k+1|k = Ax̂k|k + Buk

Pk+1|k = APk|kA
T + Qk (9)

where

Ck =
∂h

∂x

(
x̂k|k−1

)
Lk = Pk|k−1Ck

(
Rk + CkPk|k−1C

T
k

)−1

for k ∈ T . The recursion is initialized from suitable x̂1|0 and
P1|0 = PT

1|0 > 0. In (9), Qk and Rk denote the covariance
matrices of the process noise wk and, respectively, measure-
ment noise vk, which are assumed as usual to be white, zero-
mean, mutually uncorrelated and also uncorrelated with the
initial state x1.

IV. DISTRIBUTED FINITE ELEMENT KALMAN FILTER

In order to develop a scalable distributed filter for moni-
toring the target field, the idea is to decompose the original
problem on the whole domain of interest into estimation
subproblems concerning smaller subdomains, and then to
assign such subproblems to different nodes which can locally
process and exchange data. To this end, let us consider the
set of nodes N = {1, . . . , N}, subdivide the domain Ω into
possibly overlapping subdomains Ωm, m ∈ N , such that
Ω =

⋃
m∈N Ωm, and assign the task “estimation of x over

Ωm” to node m. Further, let ym
q
4
= col {yq,i : si ∈ Ωm}

denote the vector of local measurements available to node
m at time tq .

Hence, the idea is to run in each node m ∈ N a field esti-
mator for the region Ωm exploiting local measurements ym

q ,
information from the nodes assigned to neighbouring subdo-
mains, as well as the PDE model (1) properly discretised in
time and space. Taking inspiration from the Schwarz method
[9]-[11], neighbouring local estimators should iteratively find
a consensus on the estimates concerning the common parts.
The Schwarz method has been originally conceived [9] for an
iterative solution of boundary value problems. Subsequently,
it has received renewed interest [10]-[11] in connection
with the parallelisation of PDE solvers. In loose terms, the
idea of the parallel Schwarz method is to decompose the
original PDE problem on the overall domain of interest into
subproblems concerning smaller subdomains, and then to
solve in parallel such subproblems via iterations in which
previous solutions concerning neighbouring subdomains are
used as boundary conditions. As shown below, such an idea
turns out to be especially useful for the distributed filtering
problem considered in this work.

To formalise the consensus let us define, for any m ∈ N ,
a partition {Γmj}j∈Nm

of ∂Ωm (the boundary of Ωm) such
that

Γmm = ∂Ω ∩ ∂Ωm

∂Ωm =
⋃

j∈Nm

Γmj

Γmj ⊂ Ωj , ∀j 6= m

Γmj ∩ Γmh = ∅, ∀j 6= h

(10)

In this way, each piece Γmj of ∂Ωm for any j ∈ Nm\{m}
is uniquely assigned to node j.

Hence, node j is called an in-neighbour of node m
whenever Γmj 6= ∅; this clearly originates a directed network
(graph) G = (N ,L) with node set N and link set L 4

=
{(j,m) ∈ N × N : Γmj 6= ∅}. It is also convenient to
define, for each node m, its in-neighbourhood Nm

4
= {j :

(j,m) ∈ L} which, by definition, includes node m.
In order to describe the filtering cycle to be implemented in

node m within the sampling interval [tq, tq+1), let us assume
that at time t−q , before the acquisition of ym

q , such a node is
provided with a prior estimate x̂m

q|q−1 and relative covariance
Pm

q|q−1, as the result of the previous filtering cycles. Let δ
be the time interval necessary for performing one consensus
step, i.e., information exchange between neighbours and
related computations. Then, Lq

4
= (tq+1 − tq) /δ represents

the number of consensus steps (equal to the number of
allowed data exchanges) in the q-th sampling interval. Note
that, for the sake of notational simplicity, hereafter it is
supposed that tq+1 − tq is an integer multiple of δ, i.e.,
Lq ∈ Z+. Anyway, the method could easily encompass
the general case. Then, the above mentioned filtering cycle
for the proposed distributed estimation algorithm essentially
consists of:
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1) Correction, i.e. incorporation (assimilation) of the last
measurement ym

q into the current estimate;
2) Consensus, i.e. alternate exchanges of estimates with

the neighbourood Nm and predictions over the time
sub-intervals [tq + (`− 1)δ, tq + `δ] for ` = 1, . . . , Lq ,
i.e. Lq times.

The proposed Parallel Schwarz Consensus filter is detailed
hereafter.

1) Given ym
q , update the prior estimate x̂m

q|q−1 and co-
variance Pm

q|q−1 into x̂m
q|q and Pm

q|q .
2) Initialize the consensus with x̂m

q,0 = x̂m
q|q and Pm

q,0 =
Pm

q|q .
3) For ` = 1, . . . , Lq proceed as follows

a) Exchange data with the neighbourhood; specifi-
cally send to neighbour j the data x̂m

q,`−1,P
m
q,`−1

concerning the sub-boundary Γjm ⊂ ∂Ωj , and
get from neighbour j the data x̂j

q,`−1,P
j
q,`−1

concerning the sub-boundary Γmj ⊂ ∂Ωm.
b) Solve the problem

x̂mq,` − x̂mq,`−1

δ
+A

(
x̂mq,`

)
= fq,` in Ωm (11)

subject to the Dirichlet boundary conditions

x̂mq,` = x̂jq,`−1 on Γmj ∀j ∈ Nm\{m} (12)

and the linear boundary conditions

B(x̂mq,`) = 0 on Γmm . (13)

where fq,`(p)
4
= f (p, tq + `δ).

4) Set x̂m
q+1|q = x̂m

q,L and Pm
q+1|q = Pm

q,L for the next
cycle.

A number of remarks concerning the above reported algo-
rithm are in order. First of all, notice that the prediction step
of each local filter is directly incorporated into the consensus
algorithm. Clearly, the boundary value problem (11)-(13)
has to be solved via a finite dimensional approximation. In
particular, we follow the same approach described in Section
III for the centralised case by independently constructing a
FE mesh for each subdomain Ωm, and then applying the
Galerkin weighted residual method so as to derive a local
discrete-time discrete-space model. Hence, the numerical
solution of (11)-(13) takes the form

x̂m
q,` = Amx̂m

q,`−1 +
∑

j∈Nm\{m}

Amjx̂j
q,`−1 + Bmum

q,`−1

(14)
The additional term

∑
j∈Nm\{m}A

mjx̂j
q,`−1 arises from the

non-homogeneous Dirichlet boundary conditions (12). With
this respect, it is worth noting that the matrices Amj are
sparse since only the components of the neighbour estimate
x̂j
q,`−1 concerning the sub-boundary Γmj are involved. In

accordance with (14), the covariance matrix Pm
q,` associated

to the predicted estimate x̂m
q,` is determined as

Pm
q,` = AmPm

q,`−1 (Am)
T

+
∑

j∈Nm\{m}

AmjPj
q,`−1

(
Amj

)T
+ Qm .(15)

As in the centralised context, the term Qm accounts for
the various uncertainties and imprecisions (i.e., discretisa-
tion errors, imprecise knowledge of the exogenous input f
and of the boundary conditions (13)). The additional term∑

j∈Nm\{m}A
mjPj

q,`−1

(
Amj

)T
, which instead is peculiar

of the decentralised case, accounts for the fact that each
neighbour estimate x̂j

q,`−1 is affected by an estimation error
with estimated covariance equal to Pj

q,`−1. It is worth noting
that equation (15) is based on the idea (already proposed
in [3] in the context of distributed estimation of large-
scale interconnected systems) of treating each neighbour
state as an unknown stochastic input with mean x̂j

q,`−1 and
covariance Pj

q,`−1.
As already pointed out, the proposed consensus algorithm

is based on the parallel Schwarz method for evolution
problems, which, as well known, enjoys nice convergence
properties to the centralised solution as the time discretisation
step δ tends to zero [10]-[11]. Hence, it seems a sensible
and promising approach to spread the information through
the network.

Finally, the correction step of the local filtering cycle is
the usual (extended) Kalman filter update step for the local
subsystem and takes the form

x̂m
q|q = x̂m

q|q−1 + Lm
q

(
ym
q − hm

(
x̂m
q|q−1

))
Pm

q|q = Pm
q|q−1 − Lm

q (Cm
q )TPm

q|q−1

Cm
q =

∂hm

∂x

(
x̂m
q|q−1

)
Lm
q = Pm

q|q−1C
m
q

(
Rm

q + Cm
q Pm

q|q−1(Cm
q )T

)−1

where hm 4
= col {hi : si ∈ Ωm} denote the local measure-

ment function at node m.

V. NUMERICAL EXAMPLES

In this section, we provide some numerical results to
illustrate the performance of the proposed distributed fi-
nite element Kalman filter described in section IV. As a
particular example of (1), we consider the transient heat
conduction problem (see section II) in a thin polygonal
metal plate with constant, homogeneous, and isotropic prop-
erties. Suppose that the plate is relatively thin compared
to the planar dimensions, then it is appropriate to reduce
the problem to two dimensions, since the temperature can
be assumed to be constant along the thickness direction.
Hence, the field x(ξ, η, t) to be estimated in a thin plate
is modeled by the bi-dimensional parabolic PDE ∂x/∂t −
λ
(
∂2x/∂ξ2 + ∂2x/∂η2

)
= f with boundary condition

B(x) = α(ξ, η) ∂x/∂n+β(ξ, η)x such that α(ξ, η)β(ξ, η) ≥
0, α(ξ, η) + β(ξ, η) > 0, ∀(ξ, η) ∈ ∂Ω. Here ξ and η are
the Cartesian position coordinates, i.e. p = [ξ, η]T , whereas
λ = 116.6 × 10−6

[
m2/s

]
(thermal diffusivity of copper at

293 [K]) is assumed to be constant in time and space.

Experiment 1

In the first example, transient analysis is performed on a
thin adiabatic plate with a fixed temperature along the bottom
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edge and no inner heat-generation, monitored by S = 16
sensor nodes. This is a problem with mixed boundary condi-
tions, namely a non-homogeneous Dirichlet condition on the
bottom edge of the plate, and natural homogeneous Neumann
boundary conditions on the remaining insulated sides, where
∂x/∂n = 0 holds. Note that both distributed and centralised
filters are unaware of the real system boundary conditions,
so they simply assume the plate adiabatic on each side.

As shown in Fig. 1, the domain under consideration is
decomposed into N = 16 overlapping subdomains Ωm, i.e.
N = {1, . . . , 16}, each being assigned to a node with local
processing and communication capabilities. Notice that, for
simplicity, it has been assumed that N = S and that there
is only a single sensor within each subdomain Ωm. The
communication topology which defines neighbouring nodes
is shown in Fig. 1. Sensors i located in the known positions
si = [ξi, ηi]

T are assumed to collect point temperature
measurements at regularly time-spaced instants tq = q Ts,
with Ts = 100 [s] and standard deviation of measurement
noise σv = 0.1 [K]. In order to run a temperature field
estimator in each region Ωm, the matrices in (14), to be used
by the local filters, are obtained off-line by FE approximation
(see section III) and time-discretisation with fixed sampling
interval δ = Ts/L. A triangular mesh (see Fig. 1) of
size b = 0.2 (defined as the length of the longest edge
of the element), is generated for each bounded domain
with polygonal boundary. Domain triangulation allows for
a simple construction of basis functions {φj(ξ, η)}nj=1 (4),
here chosen as two dimensional hat functions. These are
defined on each element as a linear polynomial γE(ξ, η) =
c0 + c1ξ + c2η with (ξ, η) ∈ E and c0, c1, c2 ∈ IR. Such
a function is uniquely determined by its three nodal values
xi = γE(ξi, ηi), i ∈ E . Each hat function φj such that

φj(ξi, ηi) =

{
1 if i = j i, j = 1, 2, ..., n
0 if i 6= j

is, therefore, a continuous piecewise linear function with a
small support defined by the set of triangles sharing node
j. Basis functions are used at a later stage for the element-
by-element construction, in each node m, of matrices Sm

and Mm, which provide the finite-dimensional model of
temperature evolution in Ωm. The initial temperature field of
the plate is 293 [K], and the bottom edge is set to 298 [K].
Furthermore, the a-priori estimate taken as first guess of
the field of interest is 296 [K], with diagonal covariance
P1|0 = 20 I. A zero-mean white noise process has been
assumed, with covariance Q = σ2

wI, where σw = 3 [K].
The performance of the novel distributed FE Kalman

filter has been evaluated in terms of Root Mean Square
Error (RMSE) of the estimated temperature field, averaged
over a set of sampling points evenly spread within Ω, and
100 Monte Carlo trials. The duration of each simulation
experiment is fixed to 2×104 [s] (200 samples). The ground
truth of the experiments is represented by a real process
simulator implementing a finer mesh (b = 0.1 instead of
b = 0.2), and aware of the time-varying boundary conditions

of the system. Fig. 2 illustrates the performance compari-
son between centralised (cFE-KF) and distributed (dFE-KF)
filters for different values of the parameter L (number of
consensus iterations) adopted in the distributed framework.
It can be seen that the performance of the distributed FE
filters is very close, even for L = 1, to that of the centralised
filter, which collects all the data in a central node. Further,
the RMSE behaviour improves by increasing the number of
consensus steps.

Fig. 1: Domain decomposition into 16 subdomains (solid
rectangles) and graph structure (red dotted lines) of the
dFE-KF, with a detail of the mesh approximating Ω13. The
position of each sensor is denoted by a circle.

0 50 100 150 200
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   dFE−KF with L = 1
   dFE−KF with L = 2
   dFE−KF with L = 10
   cFE−KF

Fig. 2: RMSE of the FE filters in the first experiment.

Experiment 2

In the second simulation example, different boundary
conditions are considered. Specifically, a time-dependent
Dirichlet condition of 293 [K] for time steps q ∈ {0, ..., 49},
and 301 [K] for q ∈ {50, ..., 350}, is set on all nodes
of the bottom edge. The right edge of the plate is first
assumed adiabatic for q ∈ {0, ..., 119}, then a Dirichlet
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(a) Ground truth. (b) cFE-KF. (c) dFE-KF (L = 10).

(d) Ground truth. (e) cFE-KF. (f) dFE-KF (L = 10).

Fig. 3: True and estimated temperature fields in experiment
2 at time steps q = 88 (a,b,c) and q = 150 (d,e,f).

boundary condition is applied for q ∈ {120, ..., 350}. The
remaining edges are assumed thermally insulated for the
duration of the whole experiment. In addition, we consider
the initial temperature field on the plate uniform at 293 [K].
As previously assumed in experiment 1, the centralised and
distributed filters have no knowledge of boundary conditions.
Performance of the proposed distributed filter has been eval-
uated for different values of L over 100 independent Monte
Carlo runs and compared to the behaviour of the centralised
FE Kalman filter. Simulation results, in Fig. 4, show that
the proposed FE estimators provide comparable performance
to the centralised filter, moreover the gap reduces as L
increases. It is worth pointing out that the spikes appearing
in the RMSE plot, displayed in Fig. 4, are due to the rapid
change of the unknown boundary conditions, which cause a
considerable increase of the estimation error. Nevertheless,
the filters under consideration manage to compensate for the
lack of knowledge and effectively reduce the error, even if,
due to these persistent disturbances, errors do not converge
to zero.

VI. CONCLUSIONS

The paper has dealt with the decentralised estimation
of a time-evolving and space-dependent field governed by
a linear partial differential equation, given point-in space
measurements of multiple sensors deployed over the area
of interest. The originally infinite-dimensional filtering prob-
lem has been approximated into a finite-dimensional large-
scale one via the finite element method and, further, a
consensus approach inspired by the parallel Schwarz method
for domain decomposition has allowed to nicely scale the
overall problem complexity with respect to the number of
used processing nodes. Combining these two ingredients,
a novel computationally efficient consensus finite-element
Kalman filter has been proposed to solve in a decentralised
and scalable fashion filtering problems involving distributed-
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Fig. 4: RMSE of the FE filters in the second experiment.

parameter systems.

REFERENCES

[1] U. A. Khan and J. M. F. Moura, “Distributing the Kalman filter for
large-scale systems”, IEEE Trans. on Signal Processing, vol. 66, pp.
4919–4935, 2008.

[2] S. Stankovic, M. S. Stankovic, and D. M. Stepanovic, “Consensus
based overlapping decentralized estimation with missing observations
and communication faults”, Automatica, vol. 45, pp. 1397–1406, 2009.

[3] M. Farina, G. Ferrari-Trecate, and R. Scattolini, “Moving-horizon
partition-based state estimation of large-scale systems”, Automatica,
vol. 46, pp. 910–918, 2010.

[4] G. Battistelli and L. Chisci, “Kullback-Leibler average, consensus on
probability densities, and distributed state estimation with guaranteed
stability”, Automatica, vol. 5, pp. 707-718, 2014.

[5] G. Battistelli, L. Chisci, and C. Fantacci, “Parallel consensus on
likelihoods and priors for networked nonlinear filtering”, IEEE Signal
Processing Letters, vol. 21, pp. 787-791, 2014.

[6] G. Battistelli, L. Chisci, C. Fantacci, A. Farina, and A. Graziano,
“Consensus CPHD filter for distributed multitarget tracking”, IEEE
Journal of Selected Topics in Signal Processing, vol. 7, pp. 508-520,
2013.

[7] M. A. Demetriou, “Design of consensus and adaptive consensus filters
for distributed parameter systems”, Automatica, vol. 46, pp. 300–311,
2010.

[8] M. A. Demetriou, “Adaptive consensus filters of spatially distributed
systems with limited connectivity”, Proc, 52nd IEEE Conference on
Decision and Control, pp. 442-447, Firenze, Italy, 2013.

[9] H. A. Schwarz, Gesammelte mathematische Abhandlungen. Band I,
II, AMS Chelsea Publishing, Bronx, NY, 1890.

[10] P. L. Lions, On the Schwarz alternating method. I, in First Int. Symp.
on Domain Decomposition Methods for Partial Differential Equations,
R. Glowinski et al., SIAM, Philadelphia, PA, pp. 1–42, 1988,.

[11] M. J. Gander, “Schwarz methods over the course of time”, Electronic
Trans. on Numerical Analysis, vol. 31, pp. 228–255, 2008.

[12] T. F. Chan and T. P. Mathew, “Domain decomposition algorithms”,
Acta Numerica, vol. 3, pp. 61–143, 1994.

[13] A. Toselli and O. Widlund, Domain decomposition methods – Algo-
rithms and theory, Springer–Verlag, Berlin, Germany, 2005.

[14] B. Smith, P. Bjorstad, and W. Gropp, Domain decomposition: parallel
multilevel methods for elliptic partial differential equations, Cam-
bridge University Press, New York, NY, 1996.

[15] G. Pelosi, R. Coccioli, and S. Selleri, Quick finite elements for
electromagnetic waves, Artech House, Norwood, MA, 2009.

[16] S. C. Brenner and L. R. Scott, The mathematical theory of finite
element methods, Springer–Verlag, New York, NY, 1996.

[17] J.-F. Lee, J.-F. and Z. Sacks, “Whitney elements time domain (WETD)
methods”, IEEE Trans. on Magnetics., vol. 31, pp. 1325-1329, 1995.

[18] R. Suga and M. Kawahara, “Estimation of tidal current using Kalman
filter finite-element method”, Computers & Mathematics with Appli-
cations, vol. 52, pp. 1289-1298, 2006.

3700


