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Chapter 1

Introduction

1.1 Multitarget Tracking Overview

Multitarget tracking (MTT) can be defined as the problem of tracking a

number of targets through an area monitored by a single or multiple sensor

nodes with embedded computing capabilities. Every sensor acquires noisy

measurements of each target, and then computes estimates of the state of each

target. Each target estimate is referred to as a track. Multitarget tracking is

a challenging estimation problem of great practical relevance in an increasing

number of civilian and military surveillance applications, including:

• air traffic control;

• coastal and maritime surveillance;

• traffic monitoring;

• border surveillance;

• localization of unmanned and automatic guided vehicles.

The widespread use and increasing sophistication of surveillance systems has

stimulated great interest in algorithms capable of solving the multitarget
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multisensor tracking problem. This is due to the fact that several critical

issues are often encountered in practice when dealing with MTT, such as:

• missed detections, i.e. some targets may not be detected by a given

sensor;

• false alarms (clutter), i.e. some measurements might not be provided

by targets of interest;

• noisy measurements, i.e. all available measurements are subject to

measurement noise;

• unknown origin of measurements, i.e. it is not known which target (if

any) produced a given measurement;

• unknown and time-varying number of targets, i.e. new targets con-

tinuously appear in the scene and/or old targets disappear from the

scene;

• possibly high density of targets and/or clutter;

• multiple sensors, i.e. a target can produce multiple measurements

provided by different sensors;

• lack of observability from a single sensor, i.e. a single sensor may be

unable to observe the full target state.

A combination of the aforementioned conditions can easily make the multi-

target tracking task so critical that advanced techniques are required to solve

the MTT problem.

A classical multitarget tracking system recursion can be schematized as in

Figure 1.1. The tracker consists of four blocks, namely gating, data association,

track maintenance and filtering-prediction. Track formation is responsible for
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detecting new targets and initializing their tracks (initialization), as well as

for recognizing disappeared targets and terminating their tracks (termination).

Furthermore, it manages the confirmation logic that promotes tracks which

will be displayed on screen. Unassociated measurements are used for track

initialization, while associated observations are passed to the filtering and

prediction block which, in turn, consists of a bank of filters, one for each track.

They provide track predictions, used for gating and data association, as well

as target estimates for track display. Moreover, the data association block,

which aims at finding out the unknown source, either a target or clutter, of the

available measurements, assigns measurements to the existing tracks. Finally,

a gating block is cascaded at the input of data association in order to exclude

measurements which are unlikely and thus reduce the overall computational

burden.

gating data 
association

track 
maintenance

(initialization, confirmation, 
termination)

filtering & 
prediction

TRACK
DISPLAY

measurements

Figure 1.1: Basic elements of a conventional MTT system.

Recent advances in wireless sensor technology have opened up the possibility

to develop efficient surveillance systems formed by the radio interconnection
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of different low cost and low energy consumption devices with sensing, com-

munication and processing capabilities. The availability of low-cost sensors

have made it possible to create large-scale sensing that enables acquisition of

massive data from spatially-distributed sources of information. This emerg-

ing technology introduces the following additional challenges in multitarget

tracking:

• the single node has limited sensing and computational capabilities;

in addition, also data transmission is limited, since it is the main

responsible for energy consumption

• processing must be carried out in a distributed fashion, i.e. with no

coordination of a central unit, and in a scalable way with respect to the

network size;

• each node is unaware of the network topology.

The above considerations requires some sort of information fusion between

multiple sensors, in order to counteract the multisensor tracking problem

of incomplete measurements, that do not guarantee full state observability

from a single node. Moreover, in order to solve large-scale information

processing problems for sensor networks, development of novel algorithms

that are scalable is required. In particular, decentralized approaches have

been derived in order to solve estimation problems over sensor networks.

They are preferable with respect to centralized architectures for the following

reasons: first, the central processing node must run all the association and

the estimation routines. Second, a massive amount of data is transmitted to

the central node. Third, measurements may be arriving in an arbitrary order

which further complicates the association performed by the central node.

In this thesis we address distributed multitarget tracking problem for sensor

networks with a connected topology. The proposed distributed multitarget
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tracking framework heavily relies on the consensus approach, which carries

out a global fusion over the whole network, by iterating local fusion steps

among neighboring sensors. This method ensures scalability.

1.2 Thesis Organization

The outline of the present thesis is as follows:

• Chapters 2 and 3 present basic concepts of recursive Bayesian estimation,

with a particular emphasis on the nonlinear filter UKF.

• Chapters 4 and 5 describe the most commonly used target motion

models and sensors, employed in tracking problems.

• Chapters 6 provides an overview on single target and multitarget data

association problem, the focus is on single-scan Bayesian approaches.

In addition, track initialization techniques and measurement validation

are discussed.

• Chapter 7 introduces the multitarget multisensor problem. In particular,

centralized architectures for multisensor data fusion are described.

• Chapter 8 proposes two solutions to distributed multitarget tracking

problem over a sensor network.

• In Chapter 9 the performance of the proposed distributed algorithms

will be assessed by means of simulation experiments on multisensor

multitarget tracking scenarios.
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Chapter 2

Recursive Bayesian Estimation

2.1 Kalman Filter

This chapter provides a practical introduction to the well-known Kalman

filter. The Kalman filter addresses the problem of estimating the state x

of a discrete-time dynamical system. In 1960, R.E. Kalman published his

famous paper [21] presenting an efficient recursive solution to the discrete

filtering and prediction problem, in particular their optimal solution in terms

of Minimum Mean Square Error (MMSE). Consider a discrete-time linear

system: x(k + 1) = A(k)x(k) +B(k)u(k) +Dw(k)

z(k) = C(k)x(k) + v(k)
(2.1)

where: x(k) is the state; z(k) is the measurement; u(k) is a known deter-

ministic input; w(k) and v(k) represent the process and measurement noise,

respectively. Both noises are assumed zero-mean, Gaussian and white i.e.

w(k) ∼ wn(0, Q(k))

v(k) ∼ wn(0, R(k))
(2.2)

where

Q(k) = E [w(k)w(k)′] (2.3)
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is the process noise covariance and

R(k) = E [v(k)v(k)′] (2.4)

is the measurement noise covariance. The matrices A,B,C,D,Q and R are

assumed known and possibly time-varying. The initial state x(0) is modeled

as a random variable, Gaussian distributed with known mean and covariance.

In addition, the two noise sequences and the initial state are assumed mutually

independent. The aforementioned assumptions constitute the linear Gaussian

assumption. Note that the linearity of (2.1) preserves the Gaussian property

of the state and measurements (Gauss-Markov process).

The notation adopted throughout this thesis is the following: let Zk denote

the set of observations available at time k, i.e.

Zk , {z(s), s ≤ k} (2.5)

then, the conditional mean

x̂(t|k) , E
[
x(t)|Zk

]
(2.6)

depending on the values of t and k, is referred to as

• filtered estimate, if t = k

• smoothed estimate, if t < k

• predicted estimate, if t > k

The conditional covariance matrix of x(t), given the data Zk, is

P (t|k) , E
[
[x(t)− x̂(t|k)] [x(t)− x̂(t|k)]′ |Zk

]
(2.7)

and represents the covariance of the estimation error.

The initial estimate of x(0), x̂(0|0), and the associated initial covariance P (0|0),

assumed to be available, are used to initialize the estimation algorithm. The
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conditioning argument stands for Z0, the initial (a priori) information. The

algorithm consists of propagating the estimate x̂(k−1|k−1) and its covariance

matrix P (k − 1|k − 1), into the corresponding variables at the next time

step, specifically x̂(k|k) and P (k|k). This is due to the fact that the first two

moments fully characterize a Gaussian random variable. The state estimation

cycle is performed in two stages:

• prediction (or time update)

• correction (or measurement update)

The prediction equations are responsible for projecting forward in time the

current state and error covariance estimates to obtain the a priori estimates

for the next time step. The correction equations include a new measurement

into the a priori estimate to obtain an improved a posteriori estimate and

relative covariance. In each recursion, the process is repeated with the previous

a posteriori estimate used to predict the new a priori estimate. This recursive

nature is the key feature of the Kalman filter and gives the algorithm an

essentially cyclic structure in which the same computations are performed at

each time-step.

The estimation algorithm can be obtained in consequence of the above dis-

cussion. The predicted state x̂(k + 1|k) follows by applying the operator of

expectation conditioned on Zk

E
[
x(k + 1)|Zk

]
= E

[
A(k)x(k) +B(k)u(k) + w(k)|Zk

]
(2.8)

since the process noise is white and zero-mean, it yields

x̂(k + 1|k) = A(k)x̂(k|k) +B(k)u(k) (2.9)

subtracting the above from (2.1), the state prediction error is obtained

x̃(k + 1|k) , x(k + 1)− x̂(k + 1|k) = A(k)x̃(k|k) +D(k)w(k) (2.10)

9



The state prediction covariance is

E
[
x̃(k + 1|k)x̃(k + 1|k)′|Zk

]
=

= A(k)E
[
x̃(k|k)x̃(k|k)′|Zk

]
A(k)′ +D(k)E [w(k)w(k)′]D(k)′

(2.11)

that can be rewritten as

P (k + 1|k) = A(k)P (k|k)A(k)′ +D(k)Q(k)D(k)′ (2.12)

where the cross-terms in (2.11) are zero because the process noise is zero-

mean and white, hence orthogonal to x̃(k|k). The predicted measurement is

obtained as follows

E
[
z(k + 1)|Zk

]
= E

[
C(k + 1)x(k + 1) + v(k + 1)|Zk

]
(2.13)

since the measurement noise is zero-mean and white, one has

ẑ(k + 1|k) = C(k + 1)x̂(k + 1|k). (2.14)

Then, subtracting (2.14) from the measurement equation (2.1), the measure-

ment prediction error turns out to be

z̃(k + 1|k) , z(k + 1)− ẑ(k + 1|k) = C(k + 1)x̃(k + 1|k) + v(k + 1) (2.15)

from which the resulting measurement prediction covariance is

S(k + 1) = C(k + 1)P (k + 1|k)C(k + 1)′ +R(k + 1) (2.16)

Using (2.15), the covariance between state and measurement is

E
[
x̃(k + 1|k)z̃(k + 1|k)′|Zk

]
= E

[
x̃(k + 1|k) [C(k + 1)x̃(k + 1|k) + v(k + 1)]′ |Zk

]
= P (k + 1|k)C(k + 1)′

(2.17)

Combining the above expression and (2.16), the filter gain at time k is

K(k) , P (k|k − 1)C(k)′S(k)−1 (2.18)
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Therefore, the updated state estimate can be written as

x̂(k|k) = x̂(k|k − 1) +K(k)ν(k) (2.19)

where ν(k) is the so called innovation defined as follows

ν(k) , z(k)− ẑ(k|k − 1) = z̃(k|k − 1) (2.20)

As a consequence, S(k) is called the innovation covariance. Finally, the

updated state covariance at time k is

P (k|k) = P (k|k − 1)− P (k|k − 1)C(k)′S(k)−1C(k)P (k|k − 1)

= [I −K(k)C(k)]P (k|k − 1)
(2.21)

or

P (k|k) = P (k|k − 1)−K(k)S(k)K(k)′ (2.22)

There is also a recursion for the inverse covariance

P (k|k)−1 = P (k|k − 1)−1 + C(k)′R(k)−1C(k) (2.23)

If the filter uses (2.23) instead of (2.21), it is called information filter. The

filter gain can be rewritten as

K(k) = P (k|k)C(k)′R(k)−1 (2.24)

The pseudo code in Algorithm 1 summarizes the Kalman filter equations.
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Algorithm 1 KF

1: function KF(x̂(0| − 1), P (0| − 1))

2: for all time k = 0, 1, 2, . . . do

Correction

3: S(k) ←− R(k) + C(k)P (k|k − 1)C(k)′

4: K(k) ←− P (k|k − 1)C(k)
′
S(k)−1

5: ν(k) ←− z(k)− C(k)x̂(k|k − 1)

6: x̂(k|k) ←− x̂(k|k − 1) +K(k)ν(k)

7: P (k|k) ←− P (k|k − 1)−K(k)S(k)K(k)
′

Prediction

8: x̂(k + 1|k) ←− A(k)x̂(k|k) +B(k)u(k)

9: P (k + 1|k) ←− A(k)P (k|k)A
′
(k) +D(k)Q(k)D(k)

′

10: end for

11: return prediction and correction sequence of [x̂, P ]

12: end function

It is important to point out that the covariance computations are independent

of the state and measurements (and control, assumed known). Therefore,

these calculations can be performed offline. To conclude, it is important to

note that under the Gaussian assumption for the initial state and all the

noises entering into the system, the Kalman filter is the optimal Minimum

Mean Square Error (MMSE) state estimator. If the aforementioned random

variables are not Gaussian, and only the first two moments are available, then

the KF is the best linear unbiased MMSE estimator.
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Chapter 3

Nonlinear Estimation

Unfortunately, in the vast majority of practical applications, the optimal linear

Kalman filter, discussed in Chapter 2, cannot be applied. As a result, several

approximations and suboptimal solutions have been proposed over the years.

In this chapter the focus is on the estimation of the state of discrete-time

nonlinear dynamical systems, observed via nonlinear measurements. More

precisely, two different approaches will be discussed. Section 3.1 describes

the extended Kalman filter (EKF), which exploits analytic approximations

of nonlinear functions. In Section 3.2, another widely used nonlinear filter,

called unscented Kalman filter, is presented. The latter belongs to the class

of sampling methods, which approximate the posterior density by means of a

set of samples.

3.1 Extended Kalman Filter

The Extended Kalman Filter [2, 16, 17] extends, through a linearization

procedure, the use of the Kalman filter when the model of the dynamical
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system is nonlinear. Consider the nonlinear state-space model: x(k + 1) = f(k, x(k)) + w(k)

z(k) = h(k, x(k)) + v(k)

where w(k) and v(k) are independent zero-mean white Gaussian noise pro-

cesses with covariance matrices Q and R, respectively. Notice that the noises

are assumed additive. The basic idea of EKF is to approximate the nonlin-

ear functions f(·) and h(·) via a first-order Taylor series expansion, at each

time instant, around the most recent state estimate. Once a linear model

is obtained, under the assumption that the conditional probability density

function (pdf) is Gaussian, the standard Kalman filter can be applied to

calculate the mean and the covariance of such a pdf. The resulting estimate

turns out to be good only if the approximations (linearization and Gaussian

distribution) are reasonable.

The approximation operates in two stages:

1. First, the following Jacobians are defined
A(k) ∼=

[
∂f(k,·)
∂x

]
x=x̂(k|k)

C(k) ∼=
[
∂h(k,·)
∂x

]
x=x̂(k|k−1)

2. Once the above matrices A(k) and C(k) are evaluated, then a first-

order Taylor approximation of the nonlinear functions f(k, x(k)) and

h(k, x(k)) is performed around x̂(k|k) and x̂(k|k − 1), respectively: f(k, x(k)) ∼= f(k, x̂(k|k)) + A(k)[x(k)− x̂(k|k)]

h(k, x(k)) ∼= h(k, x̂(k|k − 1)) + C(k)[x(k)− x̂(k|k − 1)]

Using these approximations the model obtained is now linear, consequently

the Kalman filter can be applied to derive the following extended Kalman

filter recursions:
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• Update 

S(k) = C(k)P (k|k − 1)C(k)
′
+R(k)

K(k) = P (k|k − 1)C(k)
′
S(k)−1

ν(k) = z(k)− h(k, x̂(k|k − 1))

x̂(k|k) = x̂(k|k − 1) +K(k)ν(k)

P (k|k) = P (k|k − 1)−K(k)S(k)K(k)
′

• Prediction  x̂(k + 1|k) = f(k, x̂(k|k))

P (k + 1|k) = A(k)P (k|k)A(k)
′
+Q(k)

Algorithm 2 EKF

1: function EKF(x̂(0| − 1), P (0| − 1), f , ∂f
∂x

, h, ∂h
∂x

)

2: for all time k = 0, 1, 2, . . . do

Correction

3: C(k) ←− ∂h
∂x

(x̂(k|k − 1))

4: S(k) ←− R(k) + C(k)P (k|k − 1)C(k)
′

5: K(k) ←− P (k|k − 1)C(k)
′
S(k)−1

6: ν(k) ←− z(k)− h(k, x̂(k|k − 1))

7: x̂(k|k) ←− x̂(k|k − 1) +K(k)ν(k)

8: P (k|k) ←− P (k|k)−K(k)S(k)K(k)
′

Prediction

9: A(k) ←− ∂f
∂x

(x̂(k|k))

10: x̂(k + 1|k) ←− f(k, x̂(k|k))

11: P (k + 1|k) ←− A(k)P (k|k)A
′
(k) +D(k)Q(k)D(k)

′

12: end for

13: return prediction and correction sequence of [x̂, P ]

14: end function

15



The EKF recursion is summerized in Algorithm 2. The basic difference

between EKF and KF is the evaluation of the Jacobians of the state transition

and measurement equations. For the above reason, in the EKF the covariance

calculations are no longer decoupled from the state estimate computations;

hence, they cannot be carried out offline as in the Kalman filter. Note that

since the Jacobians are evaluated at the estimated state rather than the true

state, and higher order terms are neglected, the use of the series expansion

introduces unmodeled errors. There is no certainty that even the second-order

terms can compensate for such errors. These biases cannot be quantified and

the resulting covariance matrix is not always accurate. As a consequence, the

quality of the estimates is not guaranteed and the EKF is very sensitive to

the accuracy of the initial conditions and of the available state space model.

3.2 Unscented Kalman Filter

In this section an alternative filter used for recursive nonlinear estimation is

presented. This algorithm, referred to as the Unscented Kalman Filter (UKF),

first proposed by Julier et al.[18], provides, in general, superior performance

compared to EKF. The basic difference between the two approaches is the

representation of Gaussian random variables for propagating through system

dynamics. In the EKF, the state is approximated by a Gaussian distribution

and the recursion is carried out by linearization of the nonlinear system. This

can lead to large errors in the posterior mean and covariance of the transformed

Gaussian random variable and consequently to suboptimal performance. In

the UKF this problem is addressed by using a deterministic sampling approach.

As in the EKF, the state distribution is approximated by a Gaussian random

variable, but is now represented by a minimal set of sample points. These

points must be selected so as to capture the mean and covariance of the

Gaussian density and, when propagated through a nonlinear transformation,
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they capture the posterior mean and covariance up to the second order of

nonlinearity.
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13.3 The Unscented Transformation (UT)

 

13.3.1 The Basic Idea

 

The UT is a method for calculating the statistics of a random variable that undergoes a nonlinear
transformation. This method is founded on the intuition that 

 

it is easier to approximate a probability
distribution than it is to approximate an arbitrary nonlinear function or transformation.

 

19

 

 The approach is
illustrated in Figure 13.1. A set of points (

 

sigma points

 

) is chosen with sample mean and sample covariance
of the nonlinear function is

 

–

 

x

 

 

 

and 

 

P

 

xx

 

.

 

 The nonlinear function is applied to each point, in turn, to yield
a cloud of transformed points;

 

–

 

y

 

 

 

and 

 

P

 

yy

 

 

 

are the statistics of the transformed points.
Although this method bears a superficial resemblance to Monte Carlo-type methods, there is an

extremely important and fundamental difference. The samples are not drawn at random; they are drawn
according to a specific, deterministic algorithm. Since the problems of statistical convergence are not
relevant, high-order information about the distribution can be captured using only a very small number
of points. For an 

 

n

 

-dimensional space, only 

 

n

 

 + 1 points are needed to capture any given mean and
covariance. If the distribution is known to be symmetric, 2

 

n

 

 points are sufficient to capture the fact that
the third- and all higher-order odd moments are zero for any symmetric distribution.
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The set of sigma points, 

 

S

 

, consists of 

 

l

 

 vectors and their appropriate weights, 

 

S

 

 = {

 

i

 

 = 0, 0,…, 

 

l

 

 – 1 :

 

X

 

i

 

, 

 

W

 

i

 

}. The weights 

 

W

 

i

 

 can be positive or negative but must obey the normalization condition

(13.10)

Given these points,

 

–

 

y

 

 

 

and 

 

P

 

yy

 

 

 

are calculated using the following procedure:

1. Instantiate each point through the function to yield the set of transformed sigma points,

2. The mean is given by the weighted average of the transformed points,

(13.11)

 

FIGURE 13.1

 

The principle of the unscented transformation.
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Figure 3.1: The principle behind the unscented transformation.

On the contrary, the EKF only provides first-order accuracy. Although no

explicit Jacobian or Hessian calculations are necessary for the UKF, the

computational complexity of the UKF is the same order as that of the EKF.

The unscented Kalman filter technique approximates the distribution instead

of the nonlinear system, by using the unscented transformation.

Figure 3.2: The approximation of mean and covariance via the unscented transfor-

mation.

3.2.1 Unscented Transformation

The Unscented Transformation (UT) [20, 30] is a method for calculating

the statistics of a random variable which undergoes a nonlinear transforma-
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tion. The basic idea is to approximate a probability distribution instead

of a nonlinear function or transformation, which is more complicated. The

approach is illustrated in Figure 3.1. A set of points called sigma points

are chosen so that they have a certain mean and covariance. The nonlinear

function is applied to each point to yield transformed points. The statistics

of the transformed points can then be calculated to form an estimate of the

nonlinearly transformed mean and covariance.

Consider propagating a random variable a through a nonlinear function

g : Rn → Rnb , to produce a random variable b:

b = g(a) (3.1)

Denote the mean and covariance of a as ā and Pa respectively. In order to

compute the statistics of b = g(a), first the 2n + 1 sigma points (n is the

dimension of a) are first obtained as follows

a(0) = ā i = 0

a(i) = ā+
(√

(n+ λ)Pa

)
i

i = 1, . . . , n

a(i) = ā−
(√

(n+ λ)Pa

)
i

i = n+ 1, . . . , 2n

(3.2)

where λ = α2(n+ κ)− n is a scaling parameter. In particular, the constant α

represents the spread of the sigma points around ā and is usually set equal to

a small positive value, e.g. 1 ≤ α ≤ 10−4. The constant κ is another design

parameter, that is usually set equal to 3− n. Note that (
√

(n+ λ)Pa)i is the

ith column of a matrix square root, obtained by Cholesky factorization or

singular value decomposition of (n+λ)Pa. The sigma points in (3.2) are then

propagated through the nonlinear function

b(i) = g(a(i)) i = 0, . . . , 2n.

The mean and covariance for b are finally approximated using a weighted

18



sample mean and covariance of the posterior sigma points, by means of

b̄ =
2n∑
i=0

w(i)
m b

(i) (3.3)

Sb =
2n∑
i=0

w(i)
c (b(i) − b̄)(b(i) − b̄)′ .

and the cross-covariance between a(i) and b(i) is

Cb =
2n∑
i=0

w(i)
c (a(i) − ā)(b(i) − b̄)′

where the weights w
(i)
m and w

(i)
c , for the mean and, respectively covariance,

are defined as follows:

w(0)
m =

λ

(n+ λ)

w(i)
m =

1

2(n+ λ)
i = 1, . . . , 2n

w(0)
c =

λ

(n+ λ)
+ (1− α2 + β)

w(i)
c =

1

2(n+ λ)
i = 1, . . . , 2n

(3.4)

The parameter β contains prior knowledge on the distribution of x and for

Gaussian distributions is usually set equal to 2. Note that the Unscented

Transformation approach results in approximations that are accurate to the

third order for Gaussian inputs for all nonlinearities. For non-Gaussian inputs,

approximations are accurate to at least the second order, and the accuracy of

third and higher-order moments is influenced by the choice of α and β.
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Furthermore, the UT can be rewritten in a convenient matrix form as follows:

A = [ā . . . ā] +
√
c
[
0 ,
√
Pa ,−

√
Pa

]
B = g(A)

b̄ = Bwm
Sb = BWB′

Cb = AWB′

whereA is the matrix of sigma points (placed as columns) and the function g(·)
is separately applied to each column of the matrix. Moreover c = α2(n+ κ),

while the vector wm and the matrix W are defined as folllows:

wm =
[
w(0)
m . . . w(2n)

m

]′
W = (I − [wm . . . wm])× diag

(
w(0)
c . . . w(2n)

c

)
× (I − [wm . . . wm])

′

3.2.2 Unscented Kalman Filter Algorithm

The Unscented Kalman Filter (UKF) is a simple extension of the UT to

recursive state estimation for the following stochastic dynamical system

(assumed for simplicity with additive noise)x(k + 1) = f(k, x(k)) + w(k)

z(k) = h(k, x(k)) + v(k)

where x(k) ∈ Rn is the state, z(k) ∈ Rm is the measurement, w(k) ∼
wn(0, Q(k)) is the process noise and v(k) ∼ wn(0, R(k)) is the measurement

noise.

Exploiting the unscented transformation in the previously presented matrix

form, the Prediction and the Correction steps are carried out as follows:

• Prediction :
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Starting from the sigma points, the mean x̂(k|k− 1) and the covariance

P (k|k − 1) are calculated:

X (k − 1) = [x̂(k − 1|k − 1) . . . x̂(k − 1|k − 1)] +

+
√
c
[
0 ,
√
P (k − 1|k − 1) ,−

√
P (k − 1|k − 1)

]
X̂ (k|k − 1) = f(k − 1,X (k − 1))

x̂(k|k − 1) = X̂ (k|k − 1)wm

P (k|k − 1) = X̂ (k|k − 1)W X̂ (k|k − 1)
′
+Q(k − 1)

X (k|k − 1) = [x̂(k|k − 1) . . . x̂(k|k − 1)] +
√
c
[
0 ,
√
P (k|k − 1) ,−

√
P (k|k − 1)

]
Z(k|k − 1) = h(k,X (k|k − 1))

ẑ(k|k − 1) = Z(k|k − 1)wm

• Correction :

the innovation covariance S(k) and the cross-covariance between state

and measurement T (k) are obtained:

S(k) = Z(k|k − 1)WZ(k|k − 1)
′
+R(k)

T (k) = X (k|k − 1)WZ(k|k − 1)
′

Finally, the filter gain K(k), the updated state x̂(k|k) and its covariance

matrix P (k|k) are calculated by:

K(k) = T (k)S(k)−1

x̂(k|k) = x̂(k|k − 1) +K(k) [z(k)− ẑ(k|k − 1)]

P (k|k) = P (k|k − 1)−K(k)S(k)K(k)
′

21



Algorithm 3 UKF

1: function UKF(x̂(0|0), P (0|0), f , h, α, β, κ)

Weights computation

2: n ←− size(x̂0|0)

3: λ ←− α2(n+ κ)− n
4: w

(0)
m ←− λ

(n+λ)

5: w
(1,...,2n)
m ←− 1

2(n+λ)

6: w
(0)
c ←− λ

(n+λ)
+ (1− α2 + β)

7: w
(1,...,2n)
c ←− 1

2(n+λ)

8: wm ←−
[
w

(0)
m . . . w

(2n)
m

]′
9: W ←− (I − [wm . . . wm])× diag

(
w

(0)
c . . . w

(2n)
c

)
× (I − [wm . . . wm])

′

10: c ←− α2(n+ κ)

11: for all time t = 1, 2, . . . do

Sigma points computation

12: [U,Σ] ←− svd(P (k − 1|k − 1))

13: T (k − 1|k − 1) ←− U
√

Σ

14:

X (k − 1) ←−
[
x̂(k − 1|k − 1) . . . x̂(k − 1|k − 1)

]
+

+
√
c
[
0 , T (k − 1|k − 1),−T (k − 1|k − 1)

]
15: X̂ (k|k − 1) ←− f(k − 1,X (k − 1))

Prediction

16: x̂(k|k − 1) ←− X̂ (k|k − 1)wm

17: P (k|k − 1) ←− X̂ (k|k − 1)W X̂ (k|k − 1)
′
+Q(k − 1)

18: [U,Σ] ←− svd(P (k|k − 1))

19: T (k|k − 1) ←− U
√

Σ
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20:

X (k|k − 1) ←−
[
x̂(k|k − 1) . . . x̂(k|k − 1)

]
+

+
√
c
[
0 , T (k|k − 1),−T (k|k − 1)

]
21: Z(k|k − 1) ←− h(k,X (k|k − 1))

Correction

22: S(k) ←− Z(k|k − 1)WZ(k|k − 1)
′
+R(k)

23: T (k) ←− X (k|k − 1)WZ(k|k − 1)
′

24: K(k) ←− T (k)S(k)−1

25: x̂(k|k) ←− x̂(k|k − 1) +K(k) [z(k)− ẑ(k|k − 1)]

26: P (k|k) ←− P (k|k − 1)−K(k)S(k)K(k)
′

27: end for

28: return prediction and correction sequence of [x̂, P ]

29: end function
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Chapter 4

Target Kinematic Models

This chapter presents some of the most commonly used target motion models.

White noise acceleration (WNA) models are defined by setting the second-

order derivative of the position to zero and modeling the disturbances as

random inputs, so that acceleration becomes a white process noise. Moreover,

we consider the Wiener process acceleration model, in which the third-order

derivative of the position is modeled as a white noise. Finally, Section 4.3

discusses the exponentially correlated acceleration model. Although the

discussion deals with one-dimensional motion, for 2- or 3-dimensional motions,

one can consider independent 1-dimensional models for each coordinate.

4.1 White Noise Acceleration

The white noise acceleration model is 2-nd order for each coordinate. Consider

an object moving with constant velocity in a coordinate ξ. Then, in the

absence of noise, the equation of motion is

ξ̈(t) = 0 (4.1)

if process noise is included to take into account, the (4.1) becomes

ξ̈(t) = w̃(t) (4.2)
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where w̃ is a continuous time zero-mean white noise with

E [w̃(t)] = 0 (4.3)

E [w̃(t)w̃(τ)] = q̃(t)δ(t− τ) (4.4)

where q̃ is the intensity of w̃. To express (4.2) in state-space form, the 2-

dimensional state vector of the continuous white noise acceleration (CWNA)

model becomes:

x = [ξ ξ̇]′ (4.5)

Note that the velocity is a Wiener process, i.e. the integral of white noise.

The state equation is

ẋ(t) = Ax(t) +Dw̃(t) (4.6)

where

A =

0 1

0 0

 D =

0

1

 (4.7)

Since, in general, the observations are performed in discrete time, the corre-

sponding discrete-time state equations are considered:

x(k + 1) = Adx(k) + w(k) (4.8)

where

Ad = eAT =

1 T

0 1

 (4.9)

and the discrete-time process noise is

w(k) =

∫ T

0

eA(T−τ)Dw̃(kT + τ) dτ (4.10)

Thus, assuming q̃ to be constant, from (4.4) the covariance of w(k) is obtained

as follows

Q = E[w(k)w(k)′] =

∫ T

0

eArDQD′eA
′rdr =

[
1
3
T 3 1

2
T 2 1

2
T 2 T

]
q̃ (4.11)
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where q̃ is a design parameter that, if small enough, leads to a nearly constant

velocity (NCV) model. For this model, the process noise intensity q̃ is chosen

so that
√
Q22 =

√
q̃T quantifies the fluctuations of velocity within a sampling

interval.

In some cases, it is convenient to define a direct discrete-time model rather

than a discretized version of a continuous-time model. In such cases the

process noise, also modeled as white, enters through a noise gain, denoted as

D. The discrete-time process noise w(k) is a scalar zero-mean white sequence

E [w(k)w(j)] = σ2
wδkj (4.12)

where δkj is the Kronecker delta. The dynamic equation is the following

x(k + 1) = Ax(k) +Dw(k) (4.13)

where D is the noise gain. Moreover, in second-order models one has

w̃(t) = w(k) t ∈ [kT, (k + 1)T ] (4.14)

with accelerations uncorrelated from one period to another. The signal defined

in (4.14) represents a piecewise constant acceleration, which is the approx-

imation used to model uncertainties in the DWNA model. The transition

matrix in (4.13) is

A =

1 T

0 1

 (4.15)

Since the velocity increment during the k-th sampling period is w(k)T and

the acceleration effect on the position is w(k)1
2
T 2, the vector multiplying w(k)

in (4.13) is

D =

1
2
T 2

T

 (4.16)
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Hence, the covariance of Dw(k) is

Q = E [Dw(k)(Dw(k))′] = Dσ2
wD
′ =

1
4
T 4 1

2
T 3

1
2
T 3 T 2

σ2
w (4.17)

Usually σw is chosen in the range 0.5aM ≤ σw ≤ aM , where aM is the

maximum acceleration magnitude. This model becomes a nearly constant

velocity (NCV) model if the changes in velocity over a sampling period, which

are the same order of σwT , are small with respect to the actual velocity.

4.2 Wiener Process Acceleration

The Wiener process acceleration model is 3-rd order for each motion coordinate.

The equation of motion of a constant acceleration object with disturbances

modeled by a continuous-time zero-mean white noise for coordinate ξ is

...
ξ (t) = w̃(t) (4.18)

the continuous-time state equation is

ẋ(t) = Ax(t) +Dw̃(t) (4.19)

where

A =


0 1 0

0 0 1

0 0 0

 D =


0

0

1

 (4.20)

and

x =
[
ξ ξ̇ ξ̈

]′
(4.21)

Since the acceleration is a Wiener process, the model is called continuous

Wiener process acceleration (CWPA) or white noise jerk model (jerk is the

derivative of the acceleration).
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The resulting discrete-time state equation is

x(k + 1) = Adx(k) + w(k) (4.22)

with the transition matrix

Ad =


1 T 1

2
T 2

0 1 T

0 0 1

 (4.23)

and the covariance matrix of w(k)

Q = E [w(k)w(k)′] =


1
20
T 5 1

8
T 4 1

6
T 3

1
8
T 4 1

3
T 3 1

2
T 2

1
6
T 3 1

2
T 2 T

 q̃ (4.24)

For this model, the process noise intensity q̃ is chosen so that
√
Q33 =

√
q̃T ,

quantifies the fluctuations of acceleration within a sampling interval.

4.3 Exponentially Correlated Acceleration

The exponentially correlated acceleration model is one of the most widely

used to track maneuvering targets. This model, first introduced by Singer

[29], is based on the fact that vehicles under consideration generally follow

constant velocity trajectories, but they can also deviate from this straight line

trajectories. To this end, the model also accounts for this target maneuver

capability.

Consider a target that normally moves at constant velocity, with perturbations

on the constant velocity trajectory due to turns, evasive maneuvers and

atmospheric turbulence. In a single coordinate, the equation of motion of

such a target can be represented by

ẋ(t) = Ax(t) +Ga(t) (4.25)
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where the components of x(t) are the target position at time t and its speed,

a(t) is the acceleration at time t, also referred to as the target maneuver

variable. Moreover

A =

0 1

0 0

 G =

0

1

 (4.26)

The target acceleration is correlated in time. Specifically, a target accelerating

at time t, is likely to be accelerating also at time t+ τ for sufficiently small τ .

For example, lazy turns cause correlated acceleration inputs up to one minute,

atmospheric turbulence for one or two seconds, and evasive maneuvers can

provide correlated acceleration inputs for intervals between ten and thirty

seconds. The correlation function associated with the target acceleration is

typically modeled as

r(τ) = E [a(t)a(t+ τ)] = σ2
me
−α|τ | , α ≥ 0 (4.27)

where σ2
m, computed using the model in figure 4.1, is the instantaneous

variance of the acceleration and α is the reciprocal of the maneuver time

constant. Typical values are:

• α ' 1

60
for a lazy turn

• α ' 1

20
for an evasive maneuver

• α ' 1 for atmospheric turbulence

Fig. 1. Correlation function of target acceleration.

Fig. 2. Model of the target acceleration probability
density.

p (a)

a

where a5(T), the correlation function of the white noise
input, satisfies

III. Discrete Time Equations of Motion

Many sensors have a constant data rate, sampling
target position every T seconds. The appropriate (dis-
crete time) target equations of motions for this applica-
tion are given by

x(k + 1) = D(T, x)x(k) + u(k)

where (D(T, a) is the target state transition matrix and
u(k) is the inhomogeneous driving input. This input is not
a sampled version of the continuous time white noise
input w(t), although u(k) will be shown subsequently to be
white in the discrete time sense. Since

Tt + T

x(t + T) = eFTx(t) + eF(t + T-t)Gw(z)dz (9)
't

it follows that for the model (7),

F(DT, a) = eIT
-(k+ 1)T

u(k) = {'exp {F[(k + 1)T - j]}Gw(T)dT. (10)
JkT

These terms can be calculated using eigenvalue analysis.
The eigenvalues of F satisfy

(1 1)det (RI - F) = ,12(X + a) = 0

so that

i = {O, O, -alX}.

It can be verified that

U2 (?) = 2oa 6(z). (6)

The target equations of motion (in one dimension) can
now be expressed in terms of the white noise w(t) as

follows:

x(t) = Fx(t) + Gw(t)

where

(target position at time t

x(t) = target speed at time t

target acceleration at time t
(7)

w(t) = white noise driving function with variance 2ao2

1 T 2 [-1 + aiT+ e-

(D(T, ax) = O 1 1 [1 -e-aT]
O O e-T

acT]

(13)

When aT is small, 4D(T, a) reduces to the Newtonian
matrix

[1 T T2/2-
u)= 1 T

O0 0 1
The input vector u(k) satisfies

C+lr1 (k + 1)T- - l/a2 - I + a((k + 1)T- ) + exp [-a((k+ 1)T- )]} 0
u(k) = O 1 l/a{l- f7exp[1-a(jk+ 1)7Tl-1T))]} 10 w(r)dz

JkT O O
exp [-ax((k + 1)T r)

Jk+1)[l/{21 ep+oc((k + 1)T--() + exp[-ax((k + 1)T- )]jIk+l)Tel+
I t|1/x{1 - exp [-x((k + 1)T- T)]} w](c)dT = n2(TC) w(c)d-c.JvkT exp [-a((k + 1)T- T)] -iJkT -n3(r)

(14)

(15)

0 1 0 OC
F= O O 1 G= O -

LO O -ocj , 1j

Since w(t) is white noise, E[u(k)u(k + i)] = 0 for i #0 so
that u(k) is a discrete time white noise sequence. The
state equations just derived are therefore directly suitable
for Kalman filter applications.
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Figure 4.1: Model of the target acceleration probability density.
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The correlation function is shown in figure 4.2.

Fig. 1. Correlation function of target acceleration.

Fig. 2. Model of the target acceleration probability
density.

p (a)

a

where a5(T), the correlation function of the white noise
input, satisfies

III. Discrete Time Equations of Motion

Many sensors have a constant data rate, sampling
target position every T seconds. The appropriate (dis-
crete time) target equations of motions for this applica-
tion are given by

x(k + 1) = D(T, x)x(k) + u(k)

where (D(T, a) is the target state transition matrix and
u(k) is the inhomogeneous driving input. This input is not
a sampled version of the continuous time white noise
input w(t), although u(k) will be shown subsequently to be
white in the discrete time sense. Since

Tt + T

x(t + T) = eFTx(t) + eF(t + T-t)Gw(z)dz (9)
't

it follows that for the model (7),

F(DT, a) = eIT
-(k+ 1)T

u(k) = {'exp {F[(k + 1)T - j]}Gw(T)dT. (10)
JkT

These terms can be calculated using eigenvalue analysis.
The eigenvalues of F satisfy

(1 1)det (RI - F) = ,12(X + a) = 0

so that

i = {O, O, -alX}.

It can be verified that

U2 (?) = 2oa 6(z). (6)

The target equations of motion (in one dimension) can
now be expressed in terms of the white noise w(t) as

follows:

x(t) = Fx(t) + Gw(t)

where

(target position at time t

x(t) = target speed at time t

target acceleration at time t
(7)

w(t) = white noise driving function with variance 2ao2

1 T 2 [-1 + aiT+ e-

(D(T, ax) = O 1 1 [1 -e-aT]
O O e-T

acT]

(13)

When aT is small, 4D(T, a) reduces to the Newtonian
matrix

[1 T T2/2-
u)= 1 T

O0 0 1
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C+lr1 (k + 1)T- - l/a2 - I + a((k + 1)T- ) + exp [-a((k+ 1)T- )]} 0
u(k) = O 1 l/a{l- f7exp[1-a(jk+ 1)7Tl-1T))]} 10 w(r)dz

JkT O O
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Since w(t) is white noise, E[u(k)u(k + i)] = 0 for i #0 so
that u(k) is a discrete time white noise sequence. The
state equations just derived are therefore directly suitable
for Kalman filter applications.
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Figure 4.2: Correlation function of target acceleration.

Due to the acceleration being correlated in time, the maneuvers are neither

additive nor Gaussian. Singer’s probability density function for target ma-

neuvers is shown in figure 4.1. As illustrated in the figure, the maximum

target acceleration rate is amax(−amax) with probability pmax, whereas the

target has no acceleration with probability p0 and accelerates between −amax
and amax according to the uniform distribution. In order to use this model

in an optimal filter such as a Kalman filter, the maneuver noise needs to

be whitened. Singer uses a method analogous to the Wiener-Kolmogorov

whitening procedure. The state vector is augmented to include the maneuver

variables.

Using the correlation function r(τ) in (4.27), the acceleration a(t) can be

expressed in terms of white noise by the first-order Markov process

ȧ(t) = −αa(t) + w(t) (4.28)

driven by the white noise w(t), with

E [w(t)w(τ)] = 2ασ2
mδ(t− τ) (4.29)

Note that as α increases, the process a(t) becomes uncorrelated faster. For

α→∞ and σm →∞, the acceleration becomes white noise. This corresponds
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to the white noise acceleration model (WNA), which is second order. For

α→ 0, a(t) becomes the integral of white noise, i.e. the acceleration becomes

a Wiener process. This case corresponds to the Wiener process acceleration

(WPA) model, which is third order.

The target equation of motion can be rewritten in terms of the white noise

w(t) as

ẋ(t) = Ax(t) +Gw(t) (4.30)

where the components of x(t) are the target position, speed and acceleration

at time t, and

A =


0 1 0

0 0 1

0 0 −α

 G =


0

0

1

 (4.31)

The discrete-time equation corresponding to (4.30) for sampling period T is

x(k + 1) = Adx(k) + w(k) (4.32)

where

Ad = eAT =


1 T (αT − 1 + e−αT )/α2

0 1 (1− e−αT )/α

0 0 e−αT

 (4.33)

Assuming T sufficiently small, so that αT � 1, the covariance matrix of the

discrete-time process noise w(k) turns out to be:

Q = 2ασ2
m


T 5/20 T 4/8 T 3/6

T 4/8 T 3/3 T 2/2

T 3/6 T 2/2 T

 (4.34)

The above equation is adequate under the assumption that the sampling inter-

val T is much less than the time constant 1/α of the maneuver autocorrelation.

The exact expression of Q has the following elements

q11 =
σ2
m

α4

[
1− e−2αT + 2αT +

2α3T 3

3
− 2α2T 2 − 4αTe−αT

]
(4.35)
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q12 =
σ2
m

α3

[
e−2αT + 1− 2eαT + 2αTe−αT − 2αT + α2T 2

]
(4.36)

q13 =
σ2
m

α2

[
1− e−2αT − 2αTe−αT

]
(4.37)

q22 =
σ2
m

α2

[
4e−αT − 3− e−2αT + 2αT

]
(4.38)

q23 =
σ2
m

α

[
e−2αT + 1− 2e−αT

]
(4.39)

q33 = σ2
m

[
1− e−2αT

]
(4.40)
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Chapter 5

Tracking sensors

In this chapter, different sensors commonly employed in target tracking are

briefly reviewed. The focus is on the basic concepts of sensor operational char-

acteristics, and on the measurement equations. Sensor models are discussed

from the perspective of a designer of tracking systems rather than a sensor

designer. Kinematic measurements are of particular interest, because they

give information about the existence and location of the target, usually rela-

tive to the sensor. Typical measurements include range, range rate, bearing

(azimuth) and elevation angles. They are the output of the signal processing,

provided by the sensor, usually referred to as measurements, observations,

hits or plots. In tracking problems, several kinematic sensors are used, but

each one can be generally described by the following measurement equation

z(k) = h(k, x(k)) + v(k)

v(k) ∼ wn(0, R)
(5.1)

where x(k) is the kinematic state, z(k) is the measurement provided by the

sensor, v(k) is the measurement noise and h(·) is the measurement function.

In order to track the targets of interest and achieve good performance, the

concept of observability of the kinematic state provided by a given sensor is
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crucial. A discrete-time system

x(k + 1) = f(k, x(k)) + w(k)

z(k) = h(k, x(k)) + v(k)
(5.2)

is observable whenever in the absence of noise i.e. for w(k) ≡ 0 and v(k) ≡ 0,

it is possible to uniquely determine x(0) given y(0), y(1), . . . . In the sequel,

observability will be described for each presented sensor.

5.1 RADAR

RADAR is a sensor for the detection and location of reflecting objects with

the following operating principle

• The radar transmits a pulse of Radio Frequency (RF) energy from an

antenna that propagates in space.

• A part of the transmitted energy is intercepted by a reflecting object,

the target, located at a certain distance from the radar.

• The energy intercepted by the target is reflected in many directions.

• Some of the reflected energy, called echo, returns to the radar, ∆t

seconds later.

• The returning pulse is amplified by a receiver that decides whether or

not a target echo is present.

• If the target has been detected, its information is acquired.

Modern tracking radars are capable of measuring target angle (azimuth and

elevation), range and range rate. The range to a target is calculated by

measuring the time it takes for the radar pulse to propagate at the speed of

light, intercept the target and return back to the radar. Among all types of
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sensors, the radar provides the most accurate measurement of the distance to

a target at long range. At short ranges, the precision can be a few centimeters.

The range measurement accuracy depends on the radar signal bandwidth,

and is determined as follows

R =
c∆t

2
(5.3)

where c is the speed of light. In addition, the radar measures the azimuth

angle. It can be determined as the angle where the magnitude of the reflected

signal from a scanning antenna is at the maximum. Air-surveillance radars

with rotating antenna beams, determine the direction to a target in this

manner. This usually requires an antenna with a narrow beamwidth.

Range and angle measurements provide a 2D relative position of the target

from the radar location. The corresponding measurement equation for sensor

i, used in tracking algorithms, is

zi(k) =

ri(k)

θi(k)

+ vi(k) = hi(x(k)) + vi(k) (5.4)

where the range is

ri =
√

(px − pix)2 + (py − piy)2 (5.5)

and pi = (pix, p
i
y) is the position of sensor i in Cartesian coordinates. The

angle component of the measurement is obtained as

θi = ∠[(px − pix) + j(py − piy)] (5.6)

Usually, both range and azimuth errors are assumed independent, so that

R = diag{σ2
r , σ

2
θ} where σr and σθ are the standard deviations which depend

on the characteristics of the employed sensor. It is of interest to note that

a single RADAR can exactly locate the position of a target in absence of

noise and, hence, the observability of the kinematic state of the target is

guaranteed.
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5.2 Time Of Arrival (TOA)

The Time Of Arrival (TOA) sensor measures the distance between the target

and the sensor as the time it takes for the electromagnetic or acoustic signal

to cover that distance. Denoted the known position of sensor i as pi = (pix, p
i
y),

then the measurement function for a TOA sensor is

hi(x) =
√

(px − pix)2 + (py − piy)2 (5.7)

To achieve observability of the kinematic state, at least three TOA sensors

are necessary in a two-dimensional space, four in a three-dimensional space.

TARGET

TOA SENSOR 1

TOA SENSOR 2

TOA SENSOR 3

r1

r2

r3

Figure 5.1: Observability with three TOA sensors.
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5.3 Direction Of Arrival (DOA)

The Direction Of Arrival (DOA) sensor, also called Angle Of Arrival (AOA),

measures the angular direction of the signal returning from the target of

interest. The measurement function for a DOA sensor i is

hi(x) = ∠[(px − pix) + j(py − piy)] (5.8)

Observability of the kinematic state in a two-dimensional space is guaranteed

with at least two DOA sensors.

TARGET

DOA SENSOR 2

DOA SENSOR 1

θ1

θ2

Figure 5.2: Observability with two DOA sensors.

5.4 Doppler

Doppler sensors rely on the Doppler effect to enhance target detection. The

Doppler effect causes a frequency shift when there is a relative range rate, or

radial velocity, between the target and the sensor. As the transmitter signal is

reflected from a target, the carrier frequency of the returning signal is shifted.
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Consider a monostatic radar (both transmitter and receiver are co-located)

so that the round-trip distance is twice the distance between the transmitter

and the target. The Doppler frequency shift, denoted as fd, is a function of

the carrier wavelength λ and the relative radial velocity (range rate) between

the radar and the target , ṙ, and is given by

fd = −2ṙ

λ
(5.9)

where λ = c/f is the wavelength, c is the light speed and f is the carrier

frequency. Note that a negative sign is included in (5.9) to account for the

fact that, whenever the target is moving away from the radar, the relative

radial velocity is defined to be positive and results in a negative frequency

shift. For a Doppler sensor i, the measurement equation (5.1) can be written

as

zi(k) = ṙi(k) + vi(k) (5.10)

As a consequence of (5.9), the frequency shift, that can be easily be measured,

is proportional to the range rate

ṙi =
d

dt

[√
(px − pix)2 + (py − piy)2 + (pz − piz)2

]
(5.11)

Assuming the position of the sensor i (pix, p
i
y, p

i
z) and its velocity, if the sensor

is moving, (ṗix, ṗ
i
y, ṗ

i
z), the expression becomes the following

ṙi =
(px − pix)(ṗx − ṗix) + (py − piy)(ṗy − ṗiy) + (pz − piz)(ṗz − ṗiz)√

(px − pix)2 + (py − piy)2 + (pz − piz)2
(5.12)

Note that, among all the different sensors mentioned in this section, only

the measurement provided by the Doppler sensor depends on the velocity

components (ṗx, ṗy, ṗz) as well as the position components (px, py, pz) of the

target of interest. Observability analysis on Doppler sensors has shown that

the kinematic state of a target in a two-dimensional space can be estimated

using at least three not aligned sensors. In three dimensions, at least four

sensors, not coplanar, are necessary.
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5.5 Clutter Model

Clutter is a term that refers to unwanted echoes returning to the radar

(or another active sensor) from different sources e.g. ground, sea, weather,

buildings, etc. These spurious reflectors and the sensor noise cause false

alarms. As a matter of fact, a sensor with NRC resolution cells, declares a

detection in a cell if the reflected amplitude of the signal exceeds a given

threshold. For this reason, false alarm detections can occur when the sensor

points to a region where there is no target, but receives a signal due to sensor

noise or clutter.

Under the following assumptions:

• the detection events in each cell are mutually independent;

• the probability of false alarm detection is PFA in each cell;

the probability mass function (pmf) of the number of false alarms, in these

NRC cells, can be obtained as the probability of the number of successes in

a sequence of NRC independent Bernoulli experiments, each of which yields

success with probability PFA (binomial distribution). Then

Prob{nFA = m} = µFA(m) =

(
NRC

m

)
(PFA)m(1− PFA)NRC−m (5.13)

Consequently, the spatial density of the false alarms is

λ =
E [nFA]

V
=
NRCPFA

V
(5.14)

where V is the volume of the cells. Under the condition

PFA � 1 (5.15)

(5.13) can be approximated by the Poisson distribution, for NRC large enough

so that NRCPFA is the same order of magnitude of 1. Then, the pmf µFA(m)

becomes

µFA(m) = e−NRCPFA
(NRCPFA)m

m!
(5.16)
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Combining (5.14) and (5.16), the probability mass function of the number of

false alarms in the volume V , with respect to their spatial density, is

µFA(m) = e−λV
(λV )m

m!
(5.17)

Under the aforementioned two assumptions, the spatial distribution of the

false alarms is uniform. Hence, the probability density function of a false mea-

surement in the volume V , denoting the subspace in which the measurement

is known to fall, is given by

p(z|z is a false measurement) =
1

V
(5.18)

The above model is used for random clutter only, whereas persistent clutter

can be easily recognized and, then, eliminated.
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Chapter 6

Data Association

This chapter addresses the data association problem in target tracking. Data

association is fundamental in the presence of measurements whose origin is

uncertain. This occurs when remote sensing devices acquire observations

which can originate from true targets or clutter, and when multiple targets

are present in the same surveillance region, especially if their trajectories are

close to each other. The overall data association is the combination of the

following different problems:

• track initialization (measurement-to-measurement association).

• measurement-to-track association (always preceded by a gating proce-

dure).

• track-to-track association (for multisensor systems).

In this chapter track-to-track association is ignored, the focus being on track

formation, measurement validation and, above all, measurement-to-track

association. First, track initialization determines the presence of a target,

in order to initiate the corresponding track and start the state estimation.

Gating is a screening procedure, useful to determine which observations are

better for updating existing tracks. Moreover, it is performed in order to avoid
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unnecessary computations in the association procedure. In fact, association

collects the measurement-to-track pairings that passed through the first gating,

and establishes which are the best observation-to-track assignments to make.

There are two basic different approaches in associating data.

• Non-Bayesian data association: statistical tools, such as maximum

likelihood or hypothesis testing, are used in order to come to a binary

(hard) decision. It is made for each measurement on whether it originates

from a particular target or is a false alarm due to random clutter.

• Probabilistic or Bayesian data association: association probabilities are

evaluated for each measurement and for all possible sources so as to

take a soft decision. Subsequently, such association probabilities are

used throughout the estimation process.

Data association approaches can also be categorized with respect to the way

in which they process measurements, into

• single-scan: the estimation of the state of targets is based on the set of

measurements at the current scan only.

• multi-scan: the association decisions take into account also measure-

ments at previous scans.

6.1 Track Initialization

Track formation is a crucial issue in target tracking, especially because some

data association techniques work under the assumption that the track has

already been initialized. In these cases, track formation has to be implemented

in order to start the tracking process. For radar tracking problems the process

of track initialization is essentially carried out in two phases:

1. generation of the initial estimate using two observations;
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2. track confirmation logic, used to reduce the amount of false tracks

initialized.

Note that the first stage must assure the consistency of the estimation filter,

i.e. the covariance of the initial estimate must reflect realistically its accuracy

so that estimation errors are consistent with the evaluated covariances. In

the next sections, first the simple and common two-point difference (TPD)

track initialization algorithm will be first illustrated. Subsequently, the M/N

logic, used for track confirmation, will be described.

6.1.1 Two-Point Differencing Gating

The TPD [3] algorithm approximates the initial track state using the first two

position observations. Any consecutive pair of detections within a maximum

distance, depending on the maximum speed and measurement noise variances

of the target of interest, initiates a preliminary track. This preliminary

track, consisting of the initial state and the corresponding covariance, can

initialize the filter. In order to initialize the tracking filter for a target moving

with nearly constant velocity when position-only measurements are available,

consider two components of the state, position ξ and velocity ξ̇ in a given

coordinate. The measurement is modeled as

z(k) = ξ(k) + v(k) (6.1)

so one generates the measurement noises for the true values ξ(k), k = 1, 2

v(k) ∼ wn(0, R) (6.2)

then position and velocity estimates at scan k = 2 can be obtained as follows

ξ̂(2|2) = z(2)

ˆ̇ξ(2|2) =
z(2)− z(1)

T

(6.3)
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and the corresponding initial covariance matrix, assuming there is no process

noise, is

P (2|2) =

 R R/T

R/T 2R/T 2

 (6.4)

This method guarantees consistency of the initialization of the tracking filter,

that starts updating the state at time k = 2.

6.1.2 M/N Logic

Once a tentative track becomes a preliminary track, in order to reduce

the amount of false tracks in a dense clutter environment, a M/N logic is

implemented. This is a straightforward procedure used for track confirmation.

The idea of this logic is that a preliminary track needs a minimum of M

detections, during the first N scans (1 ≤ M < N), to become a confirmed

track. Tracks assume a different role throughout the confirmation and deletion

processes.

• New tracks are not proper tracks, but simply consist of measurements

rejected by the data association, for which a new TPD gate will be set

up in the subsequent scan.

• Preliminary tracks are initiated by any consecutive pair of detections,

within a maximum distance. Such tracks are created by the two-point

differencing technique. A track remains preliminary until it is either

confirmed or deleted, the decision relying on the M/N logic.

• Confirmed tracks are obtained from preliminary tracks after M out of

N scans.

• Deleted tracks are either preliminary tracks that do not reach the M/N

required detections or confirmed tracks that are terminated by the

tracker.
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The state diagram of the M/N logic is illustrated in figure 6.1

NEW PRELIMINARY CONFIRMED

DELETED

2/2

1/2 detections 

≥Mdetections 

< M

detections < M

age < N

age ≥ N

non detections 
N2/N2

1/1

Figure 6.1: State diagram of M/N logic.

Note that a confirmed track is terminated if one of the following two

conditions occurs:

• there are no validated measurements during N2 consecutive scans, i.e.

there are N2 consecutive misdetections.

• the estimated target speed exceeds a maximum threshold.

Notice that not only confirmed tracks are processed in the filtering and in

the data association blocks; preliminary tracks are processed as well. This is

due to the necessity of updating these tracks in order to evaluate a validation

region at subsequent scans and therefore continue the M/N procedure. This

is possible only if the state predicted estimate and its covariance are available.
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Although both preliminary and confirmed tracks are updated, only the latter

will be displayed on the radar screen.

CONFIRMED 
TRACK 

ASSOCIATION

SENSOR

ZNC(k)

Z(k)

PRELIMINARY 
TRACK 

ASSOCIATION

TWO-POINT 
DIFFERENCING 

GATE

ZNP (k)

NEW TRACKS
k + 1

Figure 6.2: Data association priorities.

In data association there is a different priority given to new, preliminary

and confirmed tracks, as shown in figure 6.2. As a matter of fact, the whole

set of measurements Z(k) provided by a sensor at time k is available only

for the data association of confirmed tracks. The subset of measurements

ZNC(k), rejected by the confirmed track association, will then be available

for preliminary tracks. Lastly, the remaining subset of measurements ZNP (k),
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discarded by both confirmed and preliminary tracks, will initiate new tracks

at the following scan.

The track initialization procedure for multitarget tracking, implemented in the

simulations described later, follows the logic illustrated in the block diagram

of figure 6.3.

PREDICTION

PRELIMINARY 
TRACK

ASSOCIATION

CONFIRMED 
TRACK

ASSOCIATION

TWO-POINT 
DIFFERENCING 

GATING
UPDATE

DISPLAY

DELETED

CYCLE 
k + 1

ZNC

ZNP

CYCLE k

preliminary

confirmed

new

Z

Figure 6.3: Block diagram of track initialization, maintenance and deletion through-

out data association and filtering.

As shown in figure 6.3, at current time k, confirmed, preliminary and new

tracks are available in the filter. The first two sets of tracks enter the prediction

block, where the predicted state estimate, the corresponding covariance, the

predicted measurement and its covariance are computed. Then, the set of
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measurements are validated, through a measurement-to-track association,

which at first involves only confirmed tracks. Subsequently, preliminary

tracks validate measurements among the ones left in the subset ZNC . The

remaining ZNP observations are collected in the TPD block, where they are

possibly associated to new tracks found at scan k − 1. After this three-level

measurement-to-track association step, confirmed and preliminary tracks,

whose measurements have been detected at the current time, are updated.

Note that the data entering the association block as preliminary, and exiting

the same block as confirmed, represents preliminary tracks that reach the

M-th detection out of N, and hence are promoted to confirmed tracks. Only

confirmed tracks are shown on the Plan Position Indicator (PPI) after the

update. The preliminary tracks, at the end of the processing cycle at time k,

will be the combination of the following tracks:

• updated preliminary tracks

• preliminary tracks which have been associated to no measurements, and

thus their state estimates and covariances have only been predicted.

• tracks that have been created in the TPD block, after two detections in

two consecutive scans

The new tracks, available at time k + 1, will be given by the unassociated

measurements at scan k. Deleted tracks, denoted by green lines in Figure 6.3,

originate from confirmed, preliminary and new tracks for which termination

conditions hold.

The choice of M and N depends on both probability of target detection PD

and probability of false alarm PFA. As a matter of fact, for a given N , the

product PDN represents the number of expected detections for a true track

in N scans. Therefore, in order to confirm true tracks, a reasonable value
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should provide

M < PDN (6.5)

On the other hand, the initialization logic should also prevent false tracks

from being confirmed. This additional requirement suggests to choose M and

N so that

AV R PFAN < M (6.6)

where AV R is the average area of the validation region. In conclusion, com-

bining (6.5) and (6.6), the integers M and N should satisfy the following

condition:

AV RPFA <
M

N
< PD (6.7)

The choice of N should also take into account the fact that only confirmed

tracks are shown on the display. Thus the number of scans, necessary for

track confirmation, cannot be too high.

6.2 Measurement Validation

In target tracking, measurements detected by sensors are first selected so that

only the most likely to be target-originated are preserved for the subsequent

data association. For each scan a validation gate is set up, so that only the

observations which fall into that limited region will be valid candidates to

update the existing tracks, while the remaining ones are assumed to be new

targets or clutter. This selection ensures reduction of the computational

burden and is mainly performed to avoid searching for observations in the

entire measurement space. The validation region guarantees that the target

observation falls in it with high probability, namely the gate probability PG.

Once a track has been initialized, the filter can evaluate a predicted measure-

ment expressed by its mean ẑ(k|k− 1) and its corresponding covariance S(k).
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Under the basic assumption that the measurement conditioned on the past is

normally distributed with probability density function

p[z(k)|Zk−1] = N [z(k); ẑ(k|k − 1), S(k)] (6.8)

the true measurement will fall in the validation or gate region

Υ(k, γ) = {z : [z − ẑ(k|k − 1)]′S(k)−1[z − ẑ(k|k − 1)] ≤ γ} (6.9)

where γ is the gate threshold that defines the confidence region, chi-square

distributed, with nz (dimension of the measurement vector) degrees of freedom.

S(k) is the covariance of the innovation. The validation region, for Gaussian

multivariate distributions, is the ellipsoid of minimum volume containing the

probability mass PG, centered at the mean, with semiaxes the square roots of

the eigenvalues of the matrix γS. The gate probability is

PG = Prob{z(k) ∈ Υ(k, γ)} (6.10)

The threshold γ can be evaluated given PG and the dimension nz from the

table of the chi-square distribution. Sometimes, instead of γ, the number of

sigmas (sigma is the standard deviation) of the gate g =
√
γ is used. The

volume of the validation region Υ corresponding to γ = g2 (g-sigma gate) is

V (k) = cnz |γS(k)| 12 = cnzg
nz |S(k)| 12 (6.11)

where cnz is the volume of the nz-dimensional unit hypersphere, e.g. c2 = π.

As a conclusion, the actual gating process accepts only observations whose

statistical distance d2 of the measurement-to-track assignment satisfies the

following relationship:

d2(k) = ν(k)′S(k)−1ν(k) ≤ γ (6.12)

where ν(k) is the innovation vector, given by the difference between the

actual and the expected measurement. The above distance is often referred

as Normalized Innovation Squared (NIS), which is, as mentioned before,

chi-square distributed if ν(k) ∼ N (0, S(k)).
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6.3 Single Target Data Association

When tracking a single target in clutter, one encounters a data association

problem. This is due to the fact that there are possibly several measurements

in the validation region of the target, discussed in Section 6.2. As a matter of

fact, the validated measurements consist of:

• The target-originated measurement. This occurs if the correct observa-

tion is first detected and then validated.

• Clutter or false alarms

In this section, only single-scan data association approaches are discussed.

First, the Nearest Neighbor (NN) method, which assigns to the target the

closest observation to the predicted measurement, is revised. This approach,

described in Section 6.3.1, is obviously non-Bayesian. An alternative is to

use a Bayesian approach, called Probabilistic Data Association (PDA) and

discussed in Section 6.3.2, which associates with a certain probability, each

measurement to the target of interest.

6.3.1 Nearest Neighbor

The simplest approach to data association is the Nearest Neighbor (NN),

which considers only one measurement-to-track hypothesis, choosing the most

likely measurement for track update, according to a certain distance measure

between the track and the measurement. The NN method is a typical single-

scan algorithm, since it considers only the set of measurements received in

the current scan to make a data association hard decision. Due to the fact

that the Nearest Neighbor approach allows each track to be associated with

the closest measurement, several tracks can have, as their nearest neighbor,

the same single observation. Therefore, the same measurement may be

used to update more than one track. This leads to measurement-to-track
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misassignments which can cause the filter to converge slowly or even fail to

converge. Consequently, the NN method is a straightforward algorithm whose

implementation is recommended in a low-clutter environment. Furthermore,

due to the aforementioned reasons, in multitarget tracking scenarios, the NN

approach is not optimal, but another version called Global Nearest Neighbor

(GNN), which prohibits multiple assignments of a single observation, can be

used as described later.

6.3.2 Probabilistic Data Association

Probabilistic data association (PDA), first introduced by Bar-Shalom and Tse

[1, 4], is a Bayesian approach to solve the problem of assigning measurements

to tracks, significantly effective in dense clutter. This method associates

validated measurements in the current scan with existing tracks by calculating

the probability for each observation of being target-originated. Subsequently

the association probabilities are used as weights for the track update. PDA

is valid under the following assumptions

• A single target being tracked;

• The track has been already initialized;

• A validation region, calculated as in Section 6.2, is set up at each scan

so that only a part of the set of measurements is considered for the

association to the target;

• A single validated measurement can originate from the target;

• The other measurements are considered false alarms. They are modeled

as independent and identically distributed (i.i.d.) with uniform spatial

distribution, as shown in Section 5.5

• For each scan, the probability of target detection is PD.

52



• The probability density function of the current state conditioned on the

past is Gaussian, with mean given by the predicted state and covariance

P (k|k− 1). Hence the past information about the target is summarized

approximately by the following sufficient statistics

p[x(k)|Zk−1] = N [x(k); x̂(k|k − 1), P (k|k − 1)]. (6.13)

The set of m(k) validated observations at the current time is

Z(k) = {zi(k)}m(k)
i=1 (6.14)

and the possible association events are

θi(k) =

{zi(k) is the target-originated measurement} i = 1, ...,m(k)

{all the measurements are false alarms} i = 0

(6.15)

As a consequence of the aforementioned assumptions, for m(k) ≥ 1, these

events turn out to be mutually exclusive and collectively exhaustive i.e. they

cannot occur together, but at least one of the events must happen so that

their probabilities sum up to unity. The association probability corresponds

to the conditional probability of the i-th association event being the correct

one, defined as

βi(k) = Prob{θi(k)|Zk} (6.16)

where

Zk = {Z(j)}kj=1 (6.17)

is the cumulative sequence of observations up to time k. The conditioning in

(6.16) can be divided into the past set of measurements Zk−1 and the current

one Z(k). In particular, considering that a Bayesian inference can be used on

both the number of validated observations m(k), and on their set of values

Z(k), (6.16) becomes

βi(k) = Prob{θi(k)|Z(k),m(k), Zk−1} (6.18)
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The application of Bayes’ theorem leads to the explicit formula

βi(k) =
1

c
p
[
Z(k)|θi(k),m(k), Zk−1]Prob{θi(k)|m(k), Zk−1} i = 0, 1, ...,m(k)

(6.19)

where: c is a normalization constant; Prob
{
θi(k)|m(k), Zk−1} is the prior

probability of measurement i being the correct one; p
[
Z(k)|θi(k),m(k), Zk−1]

is the joint density of the validated observations conditioned on measurement i

being target-originated. Specifically, p
[
Z(k)|θi(k),m(k), Zk−1] is the product

of the assumed Gaussian pdf of the correct measurement p
[
zi(k)|θi(k),m(k), Zk−1]

and the pdf [V (k)]−1 of the false measurements, which is assumed uniform in

the validation region volume. In particular, the pdf of the correct observation

is

p
[
zi(k)|θi(k),m(k), Zk−1] = P−1G N [zi(k); ẑ(k|k−1), S(k)] = P−1G N [νi(k); 0, S(k)]

(6.20)

i.e. it is Gaussian with mean equal to the predicted measurement ẑ(k|k − 1)

and the innovation covariance S(k) limited to the gate (indeed it is divided by

the gate probability PG, which is the probability that the correct observation

is inside the validation region). Thus, the pdf from (6.19) is

p
[
Z(k)|θi(k),m(k), Zk−1] =

V (k)−(m(k)−1)P−1G N [νi(k); 0, S(k)] i = 1, ...,m(k)

V (k)−m(k) i = 0

(6.21)

where V (k), defined in (6.11), is the volume of the validation region. The

probabilities of the association events conditioned only on the number of

validated measurements are denoted as

γi[m(k)] , Prob
{
θi(k)|m(k), Zk−1} = Prob {θi(k)|m(k)}

The parametric approach uses a Poisson model for the probability mass

function (pmf) of the number of false measurements in the validation region,
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with spatial density λ, so that

µF (m) = e−λV
(λV )m

m!
(6.22)

It can been demonstrated that

γi[m(k)] =

PDPG [PDPGm(k) + (1− PDPG)λV (k)]−1 i = 1, ...,m(k)

(1− PDPG)λV (k) [PDPGm(k) + (1− PDPG)λV (k)]−1 i = 0

(6.23)

Then, the application of (6.21) and (6.23) to the pdf in (6.19) yields the

following final expressions for the association probabilities:

βi(k) =


1

c
V (k)−(m(k)−1)P−1G N [νi(k); 0, S(k)]PDPG i = 1, ...,m(k)

1

c
V (k)−m(k)(1− PDPG)λV (k) i = 0

(6.24)

where the common terms of (6.23) [PDPGm(k) + (1− PDPG)λV (k)]−1 are

inside c, which is given by

c =

m(k)∑
i=0

βi(k) (6.25)

After some cancellations and dividing by PD, the following expression is

obtained

βi(k) =


1

c
N [νi(k); 0, S(k)] i = 1, ...,m(k)

1

c
λ

(1− PDPG)

PD
i = 0

(6.26)

that can be finally rewritten as

βi(k) =


ei

1− PDPG +
∑m(k)

j=1 ej
, i = 1, ...,m(k)

1− PDPG
1− PDPG +

∑m(k)
j=1 ej

, i = 0
(6.27)

where

ei ,
N [zi(k); ẑ(k|k − 1), S(k)] PD

λ
(6.28)

55



is the likelihood ratio of the measurement zi(k) originating from the target

rather than from clutter, i.e. the ratio of the pdf of the measurement zi(k)

being the correct one over the pdf of being clutter, divided by the sum of all

likelihood ratios. Note that λ in (6.28) plays the role of the uniform pdf of

the location of a false measurement. Moreover, 1− PDPG is the probability

that no measurement is correct (i = 0). The innovation Gaussian in (6.27) is

N [zi(k); ẑ(k|k − 1), S(k)] =
1

|2πS(k)| 12
e−

1
2
νi(k)

′S(k)−1νi(k) (6.29)

The association probabilities can be used in the tracking algorithm known as

Probabilistic Data Association Filter (PDAF). If the state and measurement

equations are linear it is based on the Kalman Filter, otherwise it uses EKF

(Section 3.1) or UKF (Section 3.2). The prediction of the state, its covariance

and the measurement is identical to the one in the standard Kalman Filter.

For this reason, the next section is focused on the state and covariance update.

The conditional mean of the state at scan k is given by

x̂(k|k) = E[x(k)|Zk] where Zk = {z(i), i ≤ k} (6.30)

Due to the association events being mutually exclusive and collectively ex-

haustive, the total probability theorem can be used with respect to θi(k),

thus providing:

x̂(k|k) = Prob{θi(k)|Zk}
m(k)∑
i=0

E[x(k)|θi(k), Zk]

= βi(k)

m(k)∑
i=0

x̂i(k|k)

(6.31)

where x̂i(k|k) is the updated state conditioned on the event {zi(k) is the

correct (target- originated) validated measurement} that can be written as

x̂i(k|k) = x̂(k|k − 1) +K(k)νi(k) i = 1, ...,m(k) (6.32)
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where the innovation for the i-th measurement νi(k) is

νi(k) = zi(k)− ẑ(k|k − 1) (6.33)

and the gain is the same as the one in the standard Kalman Filter

K(k) = P (k|k − 1)H(k)′S(k)−1 (6.34)

Hence the state update equation of PDAF can be obtained by combining

(6.32) into (6.31)

x̂(k|k) = x̂(k|k − 1) +K(k)ν(k) (6.35)

where ν(k) is the combined innovation defined as follows:

ν(k) =

m(k)∑
i=1

βi(k)νi(k) (6.36)

Notice that, for i = 0 there is no contribution to the combined innovation,

because either no measurement is inside the gate or the validated ones are

clutter, i.e.

x̂0(k|k) = x̂(k|k − 1) (6.37)

Similarly the covariance update is

P (k|k) = E[(x(k)− x̂(k|k))(x(k)− x̂(k|k))′|Zk]

=

m(k)∑
i=0

E[(x(k)− x̂(k|k))(x(k)− x̂(k|k))′|θi(k), Zk]βi(k)

= P̄ (k|k) + P̃ (k)

(6.38)

where

P̄ (k|k) =

m(k)∑
i=0

βi(k)Pi(k|k)

P̃ (k) =

m(k)∑
i=0

βi(k)x̂i(k|k)x̂i(k|k)′ − x̂(k|k)x̂(k|k)′

(6.39)

Notice that, for i = 0,

P0(k|k) = P (k|k − 1) (6.40)
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whereas, for i 6= 0, the covariance of the state updated with the correct

measurement is

Pi(k|k) = P c(k|k) = P (k|k−1)−K(k)S(k)K(k)′ i = 1, ...,m(k) (6.41)

Therefore

P̄ (k|k) = β0(k)P (k|k − 1) + [1− β0(k)]P c(k|k) (6.42)

where we have used the identity

β0(k) = 1−
m(k)∑
i=0

βi(k) (6.43)

The spread of the means P̃ (k|k) in (6.39) can be written as

P̃ (k) =

m(k)∑
i=0

βi(k)x̂i(k|k)x̂i(k|k)′ − x̂(k|k)x̂(k|k)′

=

m(k)∑
i=0

βi(k)[x̂(k|k − 1) +K(k)νi(k)][x̂(k|k − 1) +K(k)νi(k)]′

− [x̂(k|k − 1) +K(k)ν(k)][x̂(k|k − 1) +K(k)ν(k)]′

(6.44)

Using
m(k)∑
i=0

βi(k) = 1 (6.45)

and
m(k)∑
i=0

βi(k)νi(k) =

m(k)∑
i=1

βi(k)νi(k) = ν(k), (6.46)

since by definition

ν0(k) = 0, (6.47)

(6.44) becomes

P̃ (k) =x̂(k|k − 1)x̂(k|k − 1)′ + x̂(k|k − 1)[K(k)ν(k)]′ +K(k)ν(k)x̂(k|k − 1)′

+

m(k)∑
i=0

βi(k)K(k)νi(k)[K(k)νi(k)]′ − x̂(k|k − 1)x̂(k|k − 1)′

− x̂(k|k − 1)[K(k)ν(k)]′ − [K(k)ν(k)]x̂(k|k − 1)′ −K(k)ν(k)[K(k)ν(k)]′

(6.48)
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and after cancellations

P̃ (k) = K(k)
[m(k)∑
i=0

βi(k)νi(k)νi(k)′ − ν(k)ν(k)′
]
K(k)′ (6.49)

This term, the spread of the innovations, accounts for the uncertainty caused

by the unknown origin of the measurements. As a consequence, it is a positive

semidefinite matrix which increases the covariance of the updated state that

lastly becomes

P (k|k) = β0(k)P (k|k − 1) + [1− β0(k)]P c(k|k) + P̃ (k) (6.50)

From the above expression, it is clear that with probability β0(k) the covariance

is the prediction one and there is no update because none of the observations

are target originated. On the other hand 1−β0(k) is the weight of the updated

covariance P c(k|k) when the correct measurement is available.

In Algorithm 4 the pseudo-code summarizes the PDAF. In Figure 6.4 one

single cycle of the filter is shown.
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Algorithm 4 PDAF

1: function PDAF(x̂(0| − 1), P (0| − 1))

2: for all time k = 0, 1, 2, . . . do

Correction

3: S(k) ←− R(k) + C(k)P (k|k − 1)C(k)′

4: K(k) ←− P (k|k − 1)C(k)
′
S(k)−1

5: ẑ(k|k − 1) ←− C(k)x̂(k|k − 1)

6: for all measurements zi = 0, 1, 2, . . . ,m(k) do

7: νi(k) ←− zi(k)− ẑ(k|k − 1)

8: βi(k) =


ei

1− PDPG +
∑m(k)

j=1 ej
, i = 1, ...,m(k)

1− PDPG
1− PDPG +

∑m(k)
j=1 ej

, i = 0

9: end for

10: ν(k) ←−
m(k)∑
i=1

βi(k)νi(k)

11: x̂(k|k) ←− x̂(k|k − 1) +K(k)ν(k)

12: P c(k|k) ←− P (k|k − 1)−K(k)S(k)K(k)′

13: P̃ (k) ←− K(k)
[m(k)∑
i=0

βi(k)νi(k)νi(k)′ − ν(k)ν(k)′
]
K(k)′

14: P (k|k) ←− β0(k)P (k|k − 1) + [1− β0(k)]P c(k|k) + P̃ (k)

Prediction

15: x̂(k + 1|k) ←− A(k)x̂(k|k)

16: P (k + 1|k) ←− A(k)P (k|k)A
′
(k) +D(k)Q(k)D(k)

′

17: end for

18: return prediction and correction sequence of [x̂, P ]

19: end function
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Figure 6.4: One cycle of the PDAF.
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6.4 Multitarget Data Association

Data association in a multiple target scenario is more complicated. Several

targets as well as clutter create uncertainty on the origin of measurements.

In Figure 6.5 a multitarget situation is illustrated at a given time instant.

The predicted measurements for the two targets are denoted as ẑ1 and ẑ2.

The measurement z1 can be originated from target 1 or clutter, z3 and z4

from target 2 or clutter, while z2 from either target 1 or target 2 or clutter.

When a measurement may have originated from more than one target (e.g.

measurement z2), it will be shown that these targets cannot be considered

separately in the association problem.

This section focuses on Bayesian approaches in a multitarget environment, in

which the association of measurements is performed by considering simultane-

ously all the targets. Nevertheless, a hard decision approach to this problem

(Global Nearest Neighbor), is first discussed.

z1 z2

z3

z4

ẑ1 ẑ2

Figure 6.5: A measurement falls in the intersection of two validation regions.
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6.4.1 Global Nearest Neighbor

Global Nearest Neighbor (GNN) is an extension of the NN approach to the

multitarget case, with the difference that each validated measurement can

be assigned only to a single track. The association problem is formulated

as the well-known 2-D assignment problem, which makes a hard decision on

the measurement-to-track association and can hence be solved by algorithms

commonly used for this purpose, such as the auction or the Hungarian meth-

ods. These algorithms provide optimal and computationally less demanding

suboptimal solutions to the assignment problem.

Let NT be the number of tracks and m the number of measurements. The

classical assignment problem consists in finding a one-to-one matching between

NT tracks and m measurements. The objective is to minimize the total cost of

the assignments. The mathematical formulation for the assignment problem

can be given in terms of the following discrete constrained optimization

problem:

Minimize

NT∑
j=1

m∑
l=1

cjlajl (6.51)

Subject to :

NT∑
j=1

ajl ≤ 1 l = 1, . . .m,

m∑
l=1

ajl ≤ 1 j = 1, . . . NT ,

(6.52)

ajl ∈ 0, 1 (6.53)

where ajl = 1 if track j is assigned to measurement l, ajl = 0 otherwise. The

quantity cjl is the cost of assigning observation l to track j. The first set

of constraints ensures that each measurement can be assigned at most to a

single track. The second set of constraints, on the other hand, imposes that

each track is assigned to at most a single measurement. An optimal solution

to this problem is described in Section 8.2.3.
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In the GNN problem, for each possible assignment of a measurement l to a

track j, a Mahalanobis distance djl is defined by:

djl =
[
zl(k)− ẑj(k|k − 1)]′Sj(k)−1[zl(k)− ẑj(k|k − 1)

]
(6.54)

As mentioned in Section 6.3.1, the NN assigns to each track the closest

measurement, according to (6.54). On the other hand, the GNN algorithm

solves the assignment problem via minimization of the cost cjl in (6.51), which

is related to the distance in (6.54) as follows

cjl = − log(djl/PFA) (6.55)

where PFA is the probability of false alarm. In conclusion, the Global Nearest

Neighbor technique seeks for the globally optimal solution with respect to

the measurement-to-track assignment costs. A practical comparison between

NN and GNN assignment decisions is shown in Figure 6.6. As illustrated

in the figure, GNN, unlike NN, finds the optimal solution to the assignment

problem, preventing associations of a measurement to multiple tracks.

z1(k) z1(k)

z2(k) z2(k)

z3(k)z3(k)

z4(k)z4(k)

ẑ1(k|k − 1)ẑ1(k|k − 1)

ẑ2(k|k − 1)ẑ2(k|k − 1)

ẑ3(k|k − 1)ẑ3(k|k − 1)

(a) (b)

Figure 6.6: Data association in NN (a) and GNN (b).
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6.4.2 Joint Probabilistic Data Association

Joint Probabilistic Data Association [1, 2] is the direct extension, for multiple

target scenarios in clutter, of PDA introduced in section 6.3.2. Specifically,

JPDA takes also into account the possibility that a measurement inside the

validation region of a certain track, may originate from a different target,

that has the same measurement in its gate. As a consequence, the basic

difference with PDA is that the measurement-to-track association probabilities

are calculated jointly across the targets, so that every measurement falling

inside the surveillance region is used for the evaluation of the association

probabilities. On the other hand, in the PDA filter the weights are calculated

independently track by track. For each track, PDA computes the association

probability of each measurement in the validation region of the track, using

the Bayes rule. PDA does not consider any other observation in the track gate

to be originated from another target. Conversely, the probability calculations

of the JPDA filter do consider other measurements coming from other targets.

For this reason, JPDA computations are quite complex and computationally

intensive. Note that, if there is no intersection between validation regions

of different tracks, JPDA and PDA are equivalent. Differences arise when

trajectories of multiple targets are close to each other. First, the probability

of all possible feasible joint events is calculated. A feasible joint event is a

non-conflicting association of current tracks with measurements, based on

the requirement that two tracks cannot be associated to the same track.

The remaining unassociated observations are assumed clutter points. JPDA

evaluates the conditional probabilities of the joint association events at the

current time as follows:

θ(k) =
m⋂
j=1

θjij(k) (6.56)

where θji(k) is the event that at time k measurement j originated from target

i, j = 1, . . . ,m, and i = 0, 1, . . . , NT . ij denotes that measurement j is
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associated to target i in the specific event, and NT is the known number of

established targets. Validation gates are only used to select the feasible joint

events, i.e. events whose probabilities cannot be neglected and hence affect

the other probabilities. In particular, a joint association event θ is represented

by its event matrix

Ω̂(θ) = [ω̂ji(θ)] (6.57)

where

ω̂ji(θ) =

1, if θji ∈ θ

0, otherwise
(6.58)

For a feasible association event, the following conditions are accomplished:

• a measurement can have only one source, either a target or clutter, i.e.

NT∑
i=0

ω̂ji(θ) = 1 j = 1, . . . ,m (6.59)

• at most a single measurement can originate from a target i.e.

δi(θ) =
m∑
j=1

ω̂ji(θ) ≤ 1 i = 1, . . . , NT (6.60)

where δi(θ) is the target detection indicator. The variable which indicates

if measurement j is associated with a target in event θ is the measurement

association indicator:

τj(θ) ,
NT∑
i=1

ω̂ji(θ) (6.61)

Thus, the number of false measurements in event θ is

φ(θ) =
m∑
j=1

[1− τj(θ)] (6.62)

In order to evaluate the joint probabilities, consider the probability of an

event conditioned on the past measurements Zk up to time k

Prob{θ(k)|Zk} = Prob{θ(k)|Z(k),m(k), Zk−1} (6.63)
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the application of Bayes’ formula yields

Prob{θ(k)|Zk} =
1

c
p
[
Z(k)|θ(k),m(k), Zk−1]Prob{θ(k)|Zk−1,m(k)}

=
1

c
p
[
Z(k)|θ(k),m(k), Zk−1]Prob{θ(k)|m(k)}

(6.64)

where c is a normalization constant. Under the assumption that the states of

the targets conditioned on the past observations are mutually independent,

the likelihood function of the measurements is

p
[
Z(k)|θ(k),m(k), Zk−1] =

m(k)∏
j=1

p
[
zj(k)|θjij(k), Zk−1] (6.65)

where ij is the index of the target to which measurement j is associated in

the event under consideration; since m(k) are the measurements in the union

of the validation regions at time k, the above product form is used.

The conditional pdf of a measurement given its origin is

p
[
zj(k)|θjij(k), Zk−1] =

fij [zj(k)] , if τj [θ(k)] = 1

V −1, if τj [θ(k)] = 0
(6.66)

where

fij [zj(k)] = N
[
zj(k); ẑij(k|k − 1), Sij(k)

]
(6.67)

and ẑij (k|k−1) is the predicted measurement for target ij , with corresponding

innovation covariance Sij(k). The presence of V −1 in (6.66) is due to the

assumption that unassociated measurements are uniformly distributed over

the surveillance region of volume V . Hence, the pdf in (6.65) can be rewritten

as

p
[
Z(k)|θ(k),m(k), Zk−1] = V −φ

∏
j

{ftj [zj(k)]}τj (6.68)

where φ(θ) is the total number of false measurements in the event θ(k) and

τj are the indicators that select the single measurement densities according

to their associations in event θ(k).
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The last term to be determined in (6.64) is the prior probability

Prob{θ(k)|m(k)} = Prob{θ(k), δ(θ), φ(θ)|m(k)} (6.69)

where δ(θ) is the vector of target detection indicators corresponding to event

θ(k). Note that the above expression follows from the fact that, given θ, both

δ(θ) and the number of false measurements φ(θ) are known. Then, the joint

probability can be rewritten as

Prob{θ(k)|m(k)} = Prob{θ(k)|δ(θ), φ(θ),m(k)}Prob{δ(θ), φ(θ)|m(k)}
(6.70)

The factor follows from a combinatorial reasoning:

• The number of targets assumed detected in event θ(k) is m(k)− φ

• The set of measurement-to-target assignment events θ(k) in which the

same number of targets is detected, can be computed as the permutations

of the m(k) measurements taken as m(k)− φ.

Hence, if each association is equally likely i.e.

Prob{θ(k)|δ(θ), φ(θ),m(k)} =

(
m(k)!

φ!

)−1
(6.71)

assuming δ and φ independent, the second factor in (6.70) can be written as

Prob{δ(θ), φ(θ)|m(k)} =
∏
i

(P i
D)δi(1− P i

D)1−δiµF (φ) (6.72)

where P i
D is the detection probability of target i, µF (φ) is the probability

mass function of the number of false measurements and δi indicates that a

measurement has been assigned to track i in the joint event θ(k). Combining

(6.71) and (6.72) into the joint probability (6.70), the prior probability of a

joint association event θ(k) is obtained as

Prob{θ(k)|m(k)} =
φ!

m(k)!
µF (φ)

∏
i

(P i
D)δi(1− P i

D)1−δi (6.73)
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Finally, combining (6.68) and (6.73) into (6.64), the posterior probability of

a joint association event θ(k) turns out to be:

Prob{θ(k)|Zk} =
1

c

φ!

m(k)!
µF (φ)V −φ

∏
j

{fij [zj(k)]}τj
∏
i

(P i
D)δi(1− P i

D)1−δi

(6.74)

where φ, δi and τj depend on the considered event θ(k).

Assuming that the probability mass function of the number of false measure-

ments µF (φ) is a Poisson distribution, one has

µF (φ) = e−λV
(λV )φ

φ!
(6.75)

where λ is the spatial density of false measurements. Using (6.75) in (6.74),

V −φ and φ! cancel. Moreover, each term contains e−λV and m(k)!, which also

cancel, since they appear in the denominator c of (6.74), which is the sum

of all the numerators. The joint association probabilities of the parametric

JPDA are, therefore,

Prob{θ(k)|Zk} =
λφ

c1

∏
j

{fij [zj(k)]}τj
∏
i

(P i
D)δi(1− P i

D)1−δi (6.76)

where c1 is the appropriate normalization constant. Since m(k) is a fixed

number, a new normalization constant can be defined as

c2 , c1λ
−m(k) (6.77)

Using c2 in (6.76), the parametric joint association probabilities can be finally

rewritten as

Prob{θ(k)|Zk} =
1

c2

∏
j

{λ−1fij [zj(k)]}τj
∏
i

(P i
D)δi(1− P i

D)1−δi (6.78)

After computing the joint probabilities (6.78), the association probability

βji(k) of track i to measurement j at scan k, is the sum of the probabilities

of all joint events in which the marginal event of interest occurs. According
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to the law of total probability:

βji , Prob{θji|Zk} =
∑
θ

Prob{θ|Zk} ω̂ji(θ) (6.79)

where ω̂ji(θ) was defined in (6.58). The state estimation equations are exactly

the same as in the PDAF, discussed in Section 6.3.2

6.4.3 Cheap Joint Probabilistic Data Association

Since every possible hypothesis of association between measurements and

existing tracks has to be considered, the computation of the association

probabilities in the standard JPDA approach becomes quite complicated. For

this reason, in [14] Fitzgerald proposed a computationally cheap version of the

JPDA filter, called Cheap Joint Probabilistic Data Association (CJPDA). The

basic idea of this method is to provide an approximation of the association

probabilities to alleviate the computational burden. At the same time, this

technique aims to limit association performance degradation.

The CJPDA formula calculates the probability of track j being associated

with measurement l as

βlj =
Glj

NT∑
i=1

Gli +
m∑
i=1

Gij −Glj +B

(6.80)

where Glj is proportional to the Gaussian likelihood function and indicates

the closeness of fit of track j with the l-th measurement. It is given by:

Glj =
1

|Slj|1/2
e−

1
2
ν′ljS

−1
lj νlj (6.81)

where Slj is the covariance matrix of the innovations νlj. B is a constant

which depends on clutter density and detection probability, it can be set to

zero when the clutter is not significant. Specifically, the parameter B can be

computed as follows

B =
PFA
ARC

1− PDPG
PG

(6.82)
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where ARC is the area of the radar cell and PFA is the false alarm probability.

Note that the formula (6.80) reduces the association probability when there

are overlapping gates and a measurement falls inside regions of different tracks.

In this case, the weight is lowered by a large
∑NT

i=1Gli. In addition, if the

track has several measurements to choose from, also
∑m

i=1Gij will be large

and the probability will be smaller. In conclusion, this calculation gives higher

weights to those measurements closer to the predicted position and which are

validated by the a smaller number of tracks. The expression reduces to the

correct form when there is only a single target and several observations.

There are few useful remarks to this formulation. First, Fitzgerald states that

only the three measurements with the highest probabilities for each track

should be considered in the subsequent combined innovation. This accounts

for processor loading considerations. Furthermore, probabilities below a given

threshold can be set to zero, so that low-probability updates are prevented.
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Algorithm 5 CJPDAF

1: function CJPDAF(x̂(0| − 1), P (0| − 1))

2: for all time k = 0, 1, 2, . . . do

3: for all tracks j = 0, 1, 2, . . . , NT do

Correction

4: Sj(k) ←− R(k) + C(k)Pj(k|k − 1)C(k)′

5: Kj(k) ←− Pj(k|k − 1)C(k)
′
Sj(k)−1

6: ẑj(k|k − 1) ←− C(k)x̂j(k|k − 1)

7: for all measurements validated overall zl ∈ m(k) do

8: νlj(k) ←− zl(k)− ẑj(k|k − 1)

9: βlj(k) =
Glj(k)

NT∑
i=1

Gli(k) +

m(k)∑
i=1

Gij(k)−Glj(k) +B

10: end for

11: νj(k) ←−
m(k)∑
l=1

βljνlj(k)

12: x̂j(k|k) ←− x̂j(k|k − 1) +Kj(k)νj(k)

13: P c
j (k|k) ←− Pj(k|k − 1)−Kj(k)Sj(k)Kj(k)′

14: P̃j(k) ←− Kj(k)
[m(k)∑
l=0

βlj(k)νlj(k)νlj(k)′ − νj(k)νj(k)′
]
Kj(k)′

15: Pj(k|k) ←− β0,j(k)Pj(k|k − 1) + [1− β0,j(k)]P c
j (k|k) + P̃j(k)

Prediction

16: x̂j(k + 1|k) ←− A(k)x̂j(k|k)

17: Pj(k + 1|k) ←− A(k)Pj(k|k)A
′
(k) +D(k)Q(k)D(k)

′

18: end for

19: end for

20: return prediction and correction sequence of [x̂, P ]

21: end function
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Chapter 7

Centralized Multitarget

Tracking

In this chapter the multisensor problem is addressed. Specifically, two tech-

niques for centralized update, described in [2, 27, 31], are discussed first, for

a single target, under the assumption that the system is linear, and subse-

quently, the Parallel CJPDA filter and the Sequential CJPDAF are described

for a multitarget scenario. The term centralized states that a central data

processor receives all the measurements for filtering.

The multisensor problem is to track a target in clutter with NS sensors.

Assuming that the sensors are synchronized, at every sampling interval the

measurements received by the NS sensors are collected in a central processor.

The target dynamics and the measurements are assumed to obey the following

linear equations:x(k + 1) = A(k)x(k) + w(k)

zi(k) = Ci(k)x(k) + vi(k) i = 1, . . . , NS

(7.1)

The measurement noise sequences are zero-mean, white, independent of the

process noise w(k) and independent from sensor to sensor. For this reason,
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the covariances are

E
[
vi(k)vj(l)′

]
= Ri(k)δijδkl (7.2)

Notice that, for linear systems, parallel and sequential Kalman filtering of

measurements from multiple sensors are equivalent and optimum [31]. When

multiple sensors are used for tracking the states of multiple objects in a

cluttered environment, a data association is necessary in order to assign

measurements to the objects. When probabilistic data association algorithms

are used, even in the case of linear systems, since association probabilities

βjl depend in a nonlinear way on measurements, the equivalence of parallel

and sequential implementations no longer hold and it is not obvious which

method would yield better tracking performance. Simulations results with

both parallel and sequential implementation of a multisensor JPDA algorithm,

suggest that the sequential method yields better tracking performance [27].

7.1 Parallel Centralized Fusion

In the parallel updating approach, all the measurements from all the sensors

form a stacked vector and the state is updated simultaneously using this

vector containing the whole set of validated measurements . This vector is

z(k) =


z1(k)

...

zNS(k)

 = C(k)x(k) + v(k) (7.3)

where

C(k) =


C1(k)

...

CNS(k)

 (7.4)

v(k) =


v1(k)

...

vNS(k)

 (7.5)
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In addition, if the measurement noise for different sensors are uncorrelated,

the covariance matrix of the stacked noise vector z(k) is

E [v(k)v(k)′] = R(k) = diag
[
Ri(k)

]
= (7.6)

=


R1(k) 0 . . . 0

0
. . . 0

...
... 0

. . . 0

0 . . . 0 RNS(k)


The state update equation is

x̂(k|k) = x̂(k|k − 1) +K(k)ν(k)

= x̂(k|k − 1) + P (k|k)C(k)′R(k)−1ν(k)
(7.7)

where the following Kalman filter gain expression has been used

K(k) = P (k|k)C(k)′R(k)−1 (7.8)

and the stacked innovation is

ν(k) =


z1(k)− ẑ1(k|k − 1)

...

zNS(k)− ẑNS(k|k − 1)



=


z1(k)− C1(k)x̂(k|k − 1)

...

zNS(k)− CNS(k)x̂(k|k − 1)


(7.9)

where ẑi(k|k − 1) denotes the predicted measurement for sensor i. Using the

block-diagonal form of the matrix R(k), the updated state can be rewritten

as

x̂(k|k) = x̂(k|k − 1) +

NS∑
i=1

Ki(k)νi(k)

= x̂(k|k − 1) + P (k|k)

NS∑
i=1

Ci(k)′Ri(k)νi(k)

(7.10)
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with

νi(k) , zi(k)− Ci(k)x̂(k|k − 1) (7.11)

Similarly, the inverse covariance is

P (k|k)−1 = P (k|k − 1)−1 +

NS∑
i=1

Ci(k)′
[
Ri(k)

]−1
Ci(k) (7.12)

FILTER

P (k|k − 1)

P (k|k)

x̂(k|k)

x̂(k|k − 1)

z1(k)

z2(k)

z3(k)

zNS (k)

Figure 7.1: Parallel Filter.

7.2 Sequential Centralized Fusion

Under the assumption that measurements across time and sensors are uncor-

related, as expressed in (7.2), the update can be carried out sequentially with

the measurement of one sensor at a time, so that the measurement of each

sensor is used to further improve the intermediate state estimate.

The predicted state at time k and its covariance are

x̂0(k|k) , x̂(k|k − 1)

P 0(k|k) , P (k|k − 1)
(7.13)
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Then the sequential state updates using the measurements zi(k) from (7.1),

are

x̂i(k|k) = x̂i−1(k|k) +Ki(k)νi(k) i = 1, . . . , NS (7.14)

where

νi(k) , zi(k)− Ci(k)x̂i−1(k|k − 1) (7.15)

and the intermediate covariance updates are

P i(k|k) = P i−1(k|k − 1)−Ki(k)Si(k)Ki(k)′ i = 1, . . . , NS (7.16)

where

Si(k) = Ci(k)P i−1(k|k)Ci(k)′ +Ri(k)Ki(k) = P i−1(k|k)Ci(k)′
[
Si(k)

]−1
(7.17)

The final updated estimate and covariance at time k are

x̂(k|k) = x̂NS(k|k)

P (k|k) = PNS(k|k)
(7.18)

FILTER 2 FILTER FILTER 1

zNS (k)z2(k)z1(k)

NS

x̂(k|k − 1)

= x̂0(k|k) x̂1(k|k) x̂2(k|k) x̂NS−1(k|k)

x̂NS (k|k)

= x̂(k|k)

P (k|k − 1)

= P 0(k|k) = P (k|k)

P 1(k|k) P 2(k|k) PNS−1(k|k)
PNS (k|k)

Figure 7.2: Sequential Filter.

7.3 Parallel CJPDAF

In the next two sections parallel and sequential implementations of the

multisensor Cheap Joint Probabilistic Data Association Filter (CJPDAF)

tracking algorithm are described.
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The parallel CJPDAF uses the parallel multisensor update, mentioned in

Section 7.1. Assuming a multitarget scenario, the update is preceded by

the multisensor data association. The method chosen is CJPDA, presented

in Section 6.4.3, which is carried out with all the measurements taken into

account, so that the targets are associated with the measurements provided

by each node.

The target dynamics and the measurements from sensor i are modeled asxj(k + 1) = f(k, xj(k)) + wj(k) j = 1, . . . , NT

zij(k) = hi(k, xj(k)) + vij(k) i = 1, . . . , NS j = 1, . . . , NT

(7.19)

where xj(k) denotes the state vector of target j at the kth scan, and zij(k)

denotes the target-originated measurement from sensor i. The functions

f(k, xj(k)) and hi(k, xj(k)) and the noise covariances are assumed to be

known. After a gating process, let mi(k) denote the number of validated

measurements from sensor i at time k. Note that for a given target j and a

sensor i, it is not known which measurement l (1 ≤ l ≤ mi(k)) originates from

the target. This is the reason why data association is necessary to associate

the NT targets with the mi(k) measurements for each of the NS sensors.

The algorithm is described by the following steps:

• Initialization The tracks are initialized via M/N logic.

• Prediction The predicted state x̂j(k|k−1) and its covariance Pj(k|k−1)

are computed using x̂j(k−1|k−1) and Pj(k−1|k−1) for each track j. In

this algorithm the Unscented Kalman Filter described in Section 3.2 is

applied for filtering. In addition, also the filter gain Ki
j(k), the predicted

measurements, zij(k|k− 1), and the corresponding covariances Sij(k) are

calculated for each sensor.
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• Measurement validation Once computed zij(k|k− 1) and Sij(k), the

measurements can be validated for i = 1, . . . , NS. The number of

validated measurements will be mi(k) for each sensor.

• CJPDA The validated measurements are associated with a certain

probability to the targets, as illustrated in Section 6.4.3. In particular

using equation (6.80), at current time k one has:

βilj =
Gi
lj

NT∑
k=1

Gi
lk +

mi∑
k=1

Gi
kj −Gi

lj +Bi

(7.20)

Using the association probabilities βilj(k), for each sensor the combined

innovation is obtained as:

νij(k) =

mi(k)∑
l=1

βilj(k)νilj(k) j = 1, . . . , NT i = 1, . . . , NS (7.21)

The combined innovation is computed for each track as a weighted sum,

with the association probabilities, computed by the CJPDA, as weights.

• Parallel update The updated states of each track are then calculated

in parallel, using (7.10):

x̂j(k|k) = x̂j(k|k − 1) +

NS∑
i=1

Ki
j(k)νij(k) j = 1, . . . , NT (7.22)

where Ki
j(k) is the filter gain for measurements from the ith sensor and

νij(k) is the combined innovation for track j, calculated with measure-

ments from sensor i. The corresponding updated covariance is

Pj(k|k) = β0j(k)Pj(k|k − 1) + [1− β0j(k)]P c
j (k|k) + P̃j(k) (7.23)

where

P c
j (k|k) = Pj(k|k − 1)−

NS∑
i=1

Ki
j(k)Sij(k)Ki

j(k)′ (7.24)
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is the covariance of the state updated with the correct measurement

given by (6.41), and

P̃j(k) =

NS∑
i=1

P̃ i
j (k) (7.25)

where

P̃ i
j (k) = Ki

j(k)

mi(k)∑
l=1

βilj(k)νilj(k)νilj(k)′ − νij(k)νij(k)′

Ki
j(k)′ (7.26)

is the spread of the innovations corresponding to target j and sensor

i, already calculated in (6.49). Note that this term will be zero only if

one of the mi(k) association probabilities βilj(k) is unity, i.e. there is no

uncertainty on the measurement origin.

7.4 Sequential CJPDAF

This multisensor multitarget tracker is implemented with the same steps

described in the previous section, but using a different update approach,

which is performed as in Section 7.2, so that at each time instant, every sensor

corrects the state estimate sequentially. The order of updating is chosen

randomly at each scan.

The sequential CJPDAF is described by the following processes:

• Initialization The tracks are initialized through a M/N logic, which

after M detections out of N scans, confirms a track.

• Prediction At scan k the predicted state x̂j(k|k− 1)and its covariance

Pj(k|k− 1) are calculated for each track, using the UKF prediction step

with x̂j(k − 1|k − 1) and Pj(k − 1|k − 1) known. Then, according to

(7.13), one has

x̂0j(k|k) , x̂j(k|k − 1)

P 0
j (k|k) , Pj(k|k − 1)

(7.27)
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Subsequently, the remaining steps are carried out sequentially for

i = 1, . . . , NS. The predicted measurements zij(k|k − 1) and the corre-

sponding covariances Sij(k) are calculated for each track j. Note that

the predicted measurement is given by:

zij(k|k − 1) = hi(k, x̂i−1j (k|k)) (7.28)

The above expression shows that the state estimate corrected by sensor

i− 1 is used as predicted state estimate by sensor i.

• Measurement validation Using zij(k|k − 1) and Sij(k), the measure-

ments from sensor i are validated.

• CJPDA The data association is performed for sensor i and the com-

bined innovations are calculated using the association probabilities.

• Sequential update The state update is performed sequentially by

correcting the state estimate computed with the previous sensor:

x̂ij(k|k) = x̂i−1j (k|k) +Ki
j(k)νij(k) i = 1, . . . , NS (7.29)

The covariance update yields

P i
j (k|k) = P i−1

j (k|k)−Ki
j(k)Sij(k)Ki

j(k)′ i = 1, . . . , NS (7.30)

After the last sensor update at time k, the final estimate and covariance

are obtained as:

x̂j(k|k) = x̂NSj (k|k)

Pj(k|k) = PNS
j (k|k)

(7.31)
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Chapter 8

Distributed Multitarget

Tracking

8.1 Sensor Networks

Sensor networks have received significant attention in recent years because of

their huge potential in applications, and the considerable technical challenges

they present. The network model considered in the present work consists of

heterogeneous and geographically dispersed tracking agents (nodes) which

have processing, communication and sensing capabilities. Specifically, each

node not only can acquire measurements of kinematic variables of targets

crossing the surrounding area, but it can also process local information as

well as exchange data with neighbors. The network under consideration has

the following features:

• there is no central fusion node;

• nodes are unaware of the total number of agents and the connections

between them.

The network can be described in terms of a direct graph G = (N ,A) where

N is the set of nodes and A ⊆ N ×N is the set of arcs, representing links.
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In particular, (i, j) belongs to A if node j can receive data from node i. For

each node j ∈ N , N j , {i ∈ N : (i, j) ∈ A} denotes its set of neighbors, i.e.

the set of nodes from which node j can receive data. By definition, (j, j) ∈ A,

for any node j ∈ N and, hence, j ∈ N j, ∀j. The total number of nodes in

the network will be denoted by |N |, the cardinality of N .

Figure 8.1: Network model.

Let us now describe how wireless links are established between nodes ([6],[7],[8]).

Consider two nodes; the first transmits a signal with power pt and the other

receives this signal with power pr. The signal is received properly if pr is

larger than or equal to a certain threshold power pr,th, namely the receiver

sensitivity. Thus, the sender establishes a wireless link to the receiver if

pr ≥ pr,th. The signal attenuation from the sender to the receiver, β = pt
pr

,

can be expressed, in decibel, as

β = 10 log10

(
pt
pr

)
(8.1)

Given pt and pr,th, two nodes can communicate via a direct link (i.e. they are

neighbors) if the attenuation between them satisfies β ≤ βth, where

βth = 10 log10

(
pt
pr,th

)
(8.2)
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is the threshold attenuation. The attenuation β arises as a consequence of

two losses of the wireless channel:

• Path loss caused by distance;

• Shadow fading.

A simple model to describe the wireless channel assumes that the attenuation

is only proportional to the distance d from the sending node, so that

pr =

(
d

C

)−α
pt (8.3)

where C is a constant that represents the attenuation at a unit distance and

α is the path loss exponent of the environment (e.g. α ' 2 in free space and

α ' 3 in an urban outdoor environment). The attenuation in dB is, therefore,

modeled as

β0 = 10α log10

(
d

C

)
(8.4)

Using omnidirectional antennas, a node communicates to all nodes that are

located within a circle of radius

dmax =

(
pt
pr,th

) 1
α

[m] (8.5)

around its position. This purely geometric model, in which two nodes are

linked together if they are not further apart than a given threshold distance,

the transmission range dmax, is shown in Figure 8.2.

Figure 8.2: Geometric link model.
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In environments with buildings, cars, walls, etc. there are other factors, apart

from the distance, that contribute to the signal attenuation. This is due to the

fact that several objects ”shadow” the signal in different ways. Hence, receivers

located at the same distance d from the sender may experience different values

for pr. The received power is then approximated by a probability density

around a mean given by (8.3). Converting this probability density to dB, a

Gaussian PDF is obtained as follows

fβs(βs) =
1√
2πσ

e−
β2s
2σ2 (8.6)

Typical values are up to 10 dB. Combining path loss and shadowing, the

overall attenuation is given by

β = β0 + βs (8.7)

where β0 is a geometric, purely deterministic, component and βs a purely

random component. This link model is called shadow fading; an example is

shown in Figure 8.3.

Figure 8.3: Shadow fading link model.

8.2 Track-to-Track Association

In distributed systems, once the state estimates and the corresponding co-

variances of the tracks in each node of the network are updated, a data
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exchange between communicating nodes is carried out. As a consequence, an

association process is needed to recognize tracks related to the same target,

in order to perform the subsequent data fusion. As shown in [10], a typical

track-to-track association technique first computes a distance metric between

all the potential pairings, at the current time. Thereafter, the statistical

distance is used in gating tests in order to select only the likely potential

pairings and, finally, a track-to-track assignment matrix is formed to find the

best matching solution.

8.2.1 Distance Metric

As mentioned before, the first step is to define a distance measure using

directly Cartesian position and velocity estimates. Using the state estimates

and the covariance matrices of two tracks (i, j), at the same time instant, the

state difference vector is calculated as follows

x̃ij = x̂i − x̂j (8.8)

the above difference vector usually containing both position and velocity

components. Thus, the statistical distance between track i and track j is

defined as

d2ij , x̃′ij
[
Pi + Pj − Pij − P ′ij

]−1
x̃ij = x̃′ijS

−1
ij x̃ij (8.9)

where Pi and Pj are the state estimation covariance matrices for track i and

track j respectively, whereas Pij is the cross-covariance matrix between track

i and track j estimation errors. Note that, in our case, the cross-covariance

matrix is unknown. Pij accounts for the correlation in the track errors caused

by the common process noise, e.g. in a maneuvering target the two sensors

can present similar lag errors.
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8.2.2 The Track-to-Track Assignment Problem

In this section, the track-to-track association problem for two sensors is

addressed, under the assumption that each node has only one single track

per target. The followed approach is the same used for a general assignment

matrix with supplementary conditions that are the existence of false tracks

and missing tracks (one sensor is tracking a target that the other one has

not yet detected). According to that, there is an additional row for sensor B

assignment and an additional column for sensor A assignment, both accounting

for the likelihood that there is no matching between a track from a sensor

and tracks from the other sensor.

Consider d2ij, the normalized squared distance between track i from sensor A

and track j from sensor B, defined in (8.9). The corresponding covariance

matrix is denoted by Sij. Then the following quantities are defined:

βT = target density i.e. expected number of true targets divided by the

volume of the field of view;

PTA, PTB = probability that sensors A, B have a track on a given target

in the common field of view;

βFTA, βFTB = false track density for sensors A, B .

In addition, n is defined as the dimension used to calculate the statistical

distance d2ij, e.g. if two Cartesian components of position and velocity are

used, then n = 4.

The assignment matrix, shown in Table 8.1, is formed with the following

elements:

Pij =
βTPTAPTBe

−d2ij/2

(2π)M/2
√
|Sij|

(8.10)

PNTA = βTPTB(1− PTA) + βFTB (8.11)

PNTB = βTPTA(1− PTB) + βFTA (8.12)

87



Pij represents the probability density function corresponding to targets with a

track in both sensors, where d2ij is the normalized distance between the tracks.

PNTA is the density of tracks from sensor B with no matching track from

sensor A. Note that it is the sum of the density of true target tracks from

sensor B with no corresponding track from sensor A, plus the density of false

target track from sensor B. The interpretation is identical for PNTB. If the

assumed number of false tracks for both sensors are available, then dividing

by the volume of the field of view, PNTA and PNTB are computed. The

Sensor A Tracks

Sensor B Tracks
1 2 . . . NB No Track

1 P11 P12 . . . P1NB PNTB

2 P21 P22 . . . P2NB PNTB

. . . . . . . . . . . . . . . . . .

NA PNA1 PNA2 . . . PNANB PNTB

No Track PNTA PNTA . . . PNTA

Table 8.1: General Track-to-Track Assignment Matrix

assignment matrix can be solved if the following operations are performed:

• Calculate the logarithm and multiply all terms by 2.

• Subtract the last row value 2 lnPNTA, no track element, from all terms

• Change the sign of all elements so that the problem turns into a cost

minimization.

• Add 2 ln
[

βTPTAPTB
(2π)M/2PNTA

]
to all non-zero elements left.

• Define the no assignment cost values:

CN = 2 ln

[
βTPTAPTB

(2π)M/2PNTAPNTB

]
(8.13)
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Finally, the reduced assignment matrix is obtained, where the elements are

the costs Cij of assigning track i from sensor A to track j from sensor B:

Cij = d2ij + 2 ln
√
|Sij| (8.14)

Sensor A Sensor B Tracks No Track

Tracks 1 2 . . . NB 1 2 . . . NA

1 C11 C12 C1NB CN x x x

2 C21 C22 C2NB x CN x x
...

...
...

... x x
. . . x

NA CNA1 CNA2 CNANB x x x CN

Table 8.2: Cost Form of Track-to-Track Assignment Matrix

In Table 8.2, CN is the cost of assigning no track of sensor B to a track of

sensor A and x denotes an assignment that is not permitted. Furthermore, a

threshold on the normalized distance between tracks can be chosen, so that if

the threshold is exceeded, then the tracks are not associated, but rather the

no assignment cost is chosen. So the assignment of track i from sensor A to

track j from sensor B can occur only if Cij < CN :

d2ij < 2 ln

[
βTPTAPTB

(2π)M/2PNTAPNTB
√
|Sij|

]
, Gij (8.15)

Gij is the gate for the assignment matrix, which, if the false track densities

βFTA and βFTB are negligible, becomes

Gij = 2 ln

[
1

(2π)M/2(1− PTA)(1− PTB)βT
√
|Sij|

]
(8.16)

since PNTA ∼= βTPTB(1 − PTA), PNTB ∼= βTPTA(1 − PTB) when βFTA ∼= 0

and βFTB ∼= 0. Note that the gate becomes very large as PTA and/or PTB

approach unity; this accounts for the fact that the maximum number of
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assignments can be done when at least a sensor has a track for each target

and there are no false tracks in both nodes.

Once determined the cost form of the assignment matrix, track-to-track

association is equivalent to the classical assignment problem, defined in

Section 6.4.1, and can be solved with polynomial-time solutions, e.g. the

Hungarian algorithm, described in Section 8.2.3.

8.2.3 Hungarian Algorithm

The assignment problem, also known as the maximum weighted bipartite

matching problem, is a widely-studied problem applicable to many domains.

It can be stated as follows: given a bipartite graph made up of two partitions

V and U , and a set of weighted edges E between the two partitions, the

problem requires the selection of a subset of the edges with a maximum sum

of weights such that each node vi ∈ V or ui ∈ U is connected to at most

one edge. The problem may also be phrased as a minimization problem by

considering, instead of edge weights ωij, a set of non-negative edge costs,

cij = W wij, where W is at least as large as the maximum of all the edge

weights. Here we consider the minimization formulation of the problem.

2 Background

2.1 Terminology and Notation

With a few exceptions, this paper employs the terminology and mathematical notation
of Papadimitriou and Steiglitz [6]. The Hungarian algorithm assumes the existence of
a bipartite graph, G = {V, U,E} as illustrated in Figure 1(a), where V and U are the
sets of nodes in each partition of the graph, and E is the set of edges. The edge weights
may be stored in a matrix as shown in Fig. 1(b). Missing edges are assumed to have
zero weight. The minimization form of the problem assumes a matrix of edge costs,
cij = W wij where W ≥ max(wij). Missing edges may be given a large cost
(≥W ), as illustrated in Figure 1(c).

v6 u6

v1

v2

v3

v4
v5

u1

u2

u3

u4
u5

(a)

3
0
0
0
8
0
u6

07060v5
v6

v4

v3

v2

v1
wij u5u4u3u2u1

90080

88003
09007
55040
60980

(b)

7
!
!
!
2
!

u6

!3!4!v5
v6

v4

v3

v2

v1
cij u5u4u3u2u1

1!!2!

22!!7
!1!!3
55!6!
4!12!

(c)

Figure 1: (a)A bipartite graph, (b) A matrix of edge weights, (c) An alternative repre-
sentation showing edge costs

Each node in the graph may be matched (assigned) or unmatched (unassigned).
Unmatched nodes are also called exposed. Edges likewise may be matched or un-
matched. An edge (vi, uj) is matched if vi is matched to uj and unmatched otherwise.
For clarity, we designate matched edges with solid lines and unmatched edges with
dotted lines, as shown in Fig. 2(a). If vi is matched to uj , we call uj the mate of vi,
and vice-versa. An alternating path is a path through the graph such that each matched
edge is followed by an unmatched edge and vice-versa. In Fig. 2(a), (v5, u2, v1, u1, v3)
is an example of an alternating path. An augmenting path, such as (v5, u2, v1, u3) in
Fig. 2(a), is an alternating path that begins and ends with an exposed node. All alter-
nating paths originating from a given unmatched node form a Hungarian tree. Search-
ing for an augmenting path in a graph involves exploring these alternating paths in a
breadth-first manner, and the process can be called growing a Hungarian tree. Figure
2(b) illustrates the process of growing a Hungarian tree rooted at node v5, based on the
graph in Figure 2(a).

2

Figure 8.4: A bipartite graph.
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The classical solution to the assignment problem is given by the Hungarian

or Kuhn-Munkres algorithm, originally proposed by H. W. Kuhn in [22] and

refined by J. Munkres in [26]. The Hungarian algorithm solves the assignment

problem in O(n3) time, where n is the size of one partition of the bipartite

graph. This and other existing algorithms for solving the assignment problem

assume the a priori existence of a matrix of edge weights, wij, or costs, cij,

and the problem is solved with respect to these values.

The Hungarian algorithm assumes the existence of a bipartite graph, G =

{V, U,E} where V and U are the sets of nodes in each partition of the graph,

and E is the set of edges. Missing edges are assumed to have zero weight. The

minimization form of the problem assumes a matrix of edge costs, cij = W wij

where W ≥ max(wij). Missing edges may be given a large cost (≥ W ). Each

node in the graph may be matched (assigned) or unmatched (unassigned).

Unmatched nodes are also called exposed.

The algorithm assigns dual variables αi to each node vi and dual variables βj

to each node vj . It exploits the fact that the dual of the minimization version

of the assignment problem is feasible when αi + βj ≤ cij [28]. The Hungarian

algorithm maintains feasible values for all the αi and βj from initialization

through termination. An edge in the bipartite graph is called admissible

when αi + βj = cij. The subgraph consisting of only the currently admissible

edges is called the equality subgraph. Starting with an empty matching, the

basic strategy employed by the Hungarian algorithm is to repeatedly search

for augmenting paths in the equality subgraph. If an augmenting path is

found, the current set of matches is augmented by flipping the matched and

unmatched edges along this path. Because there is one more unmatched

than matched edge, this flipping increases the cardinality of the matching

by one, completing a single stage of the algorithm. If an augmenting path is

not found, the dual variables are adjusted to bring additional edges into the
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equality subgraph by making them admissible, and the search continues. n

such stages of the algorithm are performed to determine n matches, at which

point the algorithm terminates.

If the size of the two partitions of the graph are not equal, a typical strategy is

to insert into the relevant partition, dummy nodes with zero-weight edges to

all nodes in the opposite partition. As such, the Hungarian algorithm always

returns a complete matching, but this matching may include some zero-weight

edges, representing “no assignment”. Each stage of the Hungarian algorithm

takes O(n2) arithmetic operations (if implemented with the appropriate data

structures, and the computational complexity of the entire algorithm involving

n stages is thus O(n3). The Hungarian algorithm is provably complete and

optimal [28].

8.3 Consensus

In distributed algorithms, there is no central fusion center and the nodes of

the sensor network do not have any global knowledge of the network topology.

Consider the network model mentioned in Section 8.1 and suppose that, in

each node of the network, after local processing, a PDF representing the local

information is available. For example, such PDFs can be the result of some

recursive Bayesian estimation algorithm (as in our case). The local information

on the vector of interest is exchanged with neighbors in order to eventually

reach an agreement on a good estimate. The objective is to implement a

distributed fusion which guarantees scalability, i.e. the computational load

in each node is independent of the size of the sensor network. Due to this

requirement, Bayesian approaches are not suitable. As a matter of fact, they

need to know, for each pair of neighbors, the quantity of interest conditioned

to the common information. This is impossible to achieve in a scalable way.

Hence, a robust suboptimal fusion technique, namely consensus, [5],[12] is used
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for distributed averaging over a sensor network. The basic idea is that each

node can compute the collective average of a given quantity by calculating

iterative regional averages. The collective average takes into account all the

nodes of the network, whereas the regional averages are evaluated between

neighboring nodes only.

A consensus problem can be defined as follows. Consider node i ∈ N and the

estimate θ̂i of a given quantity θ available at node i. The average consensus

problem consists of finding an algorithm such that

lim
`→∞

θ̂i(`) = θ̂, ∀i ∈ N (8.17)

In other words, the objective of consensus algorithms is the convergence of

regional averages to the following collective average

θ̄ =
1

|N |
∑
i∈N

θ̂i (8.18)

starting from the initialization θ̂i(0) = θ̂i, then a simple consensus algorithm

has the following iterative form

θ̂i(`+ 1) =
∑
j∈N i

πi,j θ̂j(`) ∀i ∈ N , (8.19)

that is the regional average computed in node i, where the consensus weights

must fulfill the conditions
πi,j ≥ 0 ∀i, j ∈ N∑
j∈N i

πi,j = 1 ∀i ∈ N (8.20)

It can be noted from (8.19) and (8.70) that for each node the estimate at

a given consensus step ` + 1 is computed as a convex combination of the

estimates of the neighbors at the previous consensus step `.
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8.3.1 Information Filter

In distributed state estimation algorithms, usually it is convenient to use the

information filter (IF) instead of the standard Kalman filter, discussed in

Chapter 1. The conventional (covariance) Kalman filter propagates in time

the state estimate x̂(k|k − 1) and the corresponding covariance P (k|k − 1).

While the information filter updates the inverse of the covariance matrix,

called information matrix, defined as:

Ω(k|k − 1) , P (k|k − 1)−1

Ω(k|k) , P (k|k)−1
(8.21)

and the so called information vectors defined as follows:

q(k|k − 1) , P (k|k − 1)−1x̂(k|k − 1)

q(k|k) , P (k|k)−1x̂(k|k)
(8.22)

Under the assumption that the covariance matrix of the process noise Q is

nonsingular, i.e. det(Q) 6= 0, recursive equations for the information state

vector and the information matrix, can be derived directly from the Kalman

filter equations. The resulting information filter is mathematically equivalent

to the standard Kalman filter. The correction equation for the information

matrix is

Ω(k|k) = Ω(k|k − 1) + C ′R−1C

= Ω(k|k − 1) +
∑
i∈N

(Ci)′(Ri)−1Ci (8.23)

where N is the set of sensors, i.e.nodes that get measurements of the state

of the system. A similar expression can be found for the information state

vector

q(k|k) = q(k|k − 1) + C ′R−1z(k)

= q(k|k − 1) +
∑
i∈N

(Ci)′(Ri)−1zi(k)
(8.24)
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initialized by Ω(0| − 1) = P (0| − 1)−1 and q(0| − 1) = Ω(0| − 1)x̂(0| − 1),

respectively. Note that, due to the independence of measurements, the filter

update has the following form

Ω(k|k) = Ω(k|k − 1) +
∑
i∈N

δΩi

q(k|k) = q(k|k − 1) +
∑
i∈N

δqi(k)

where

δΩi ,
(
Ci
)′ (

Ri
)−1

Ci

δqi(k) ,
(
Ci
)′ (

Ri
)−1

zi(k)
(8.25)

represent the additive corrections for the information matrix and the infor-

mation vector provided by node i.

The information matrix prediction can be found by applying the matrix

inversion lemma

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1 (8.26)

to the Kalman filter covariance prediction in (2.12), which yields

Ω(k + 1|k) = Q−1 −Q−1A
(

Ω(k|k) + A
′
Q−1A

)−1
A
′
Q−1 (8.27)

Similarly, the information state vector prediction can be obtained as

q(k + 1|k) = Q−1A
(

Ω(k|k) + A
′
Q−1A

)−1
q(k|k) (8.28)

Algorithm 4 summarizes the information filter recursion.
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Algorithm 6 IF

1: function IF(x̂(0| − 1), P (0| − 1), δΩi, δqi(k)) i = 1, . . . , Ns

2: for all time k = 0, 1, 2, . . . do

Correction

3: δΩ ←− C
′
R−1C

4: Ω(k|k) ←− Ω(k|k − 1) +
∑
i∈NS

δΩi

5: q(k|k) ←− q(k|k − 1) +
∑
i∈NS

δqi(k)

6: P (k|k) ←− Ω(k|k)−1

7: x̂(k|k) ←− P (k|k) q(k|k)

Prediction

8: Ω(k + 1|k) ←− Q−1 −Q−1A
(
Ω(k|k) + A

′
Q−1A

)−1
A
′
Q−1

9: q(k + 1|k) ←− Q−1A
(
Ω(k|k) + A

′
Q−1A

)−1
q(k|k)

10: P (k + 1|k) ←− Ω(k + 1|k)−1

11: x̂(k + 1|k) ←− P (k + 1|k)q(k + 1|k)

12: end for

13: return prediction and correction sequence of [x̂, P ]

14: end function

8.3.2 Consensus on Information

Recalling the definition of information matrix and information vector, the

consensus problem (8.17) can be solved by updating the local data via convex

combination with the data received by the neighbors. This choice leads to

the following algorithm for consensus on information

Ωi(`+ 1) =
∑
j∈N i

πi,j Ωj(`) ∀i ∈ N , ` = 0, 1, . . . (8.29)

qi(`+ 1) =
∑
j∈N i

πi,j qj(`) ∀i ∈ N , ` = 0, 1, . . . (8.30)
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where the recursion is initialized by Ωi(0) = Ωi and qi(0) = qi, ∀i ∈ N .

Let Π denote the consensus matrix whose (i, j)-element is the consensus

weight πi,j (if j /∈ N i then πi,j is taken as 0). The non-negative square

consensus matrix Π is primitive if there exists an integer m such that all the

elements of Πm are strictly positive. Furthermore Π is doubly stochastic if all

its rows and columns sum up to unity, i.e.∑
i∈N

πi,j = 1 ∀j ∈ N (8.31)∑
j∈N

πi,j = 1 ∀i ∈ N (8.32)

Let the consensus matrix Π be primitive and doubly stochastic. Then,

the consensus algorithm (8.29)-(8.30) leads asymptotically to the following

convergence

lim
`→∞

Ωi(`) = Ω̄, ∀i ∈ N (8.33)

lim
`→∞

qi(`) = q̄, ∀i ∈ N (8.34)

where Ω̄ and q̄ are the collective averages of the information matrices and,

respectively, vectors. As discussed in [11], a necessary condition for the matrix

Π to be primitive is that the graph G associated with the sensor network is

strongly connected. Under this assumption, a possible choice for the consensus

weights (8.70) is given by the Metropolis weights [23, 11]:

πi,j =
1

max{|Ni|, |Nj|}
∀i, j ∈ N , i 6= j

πi,i = 1−
∑

j∈N i,j 6=i

πi,j ∀i ∈ N

The consensus on information is then applied to distributed state estimation.

A linear-Gaussian case is first considered, which can later be extended to the
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nonlinear case. Consider a discrete-time linear system

x(k + 1) = Ax(k) + w(k) (8.35)

whose state is measured by N linear sensors

zi(k) = Cix(k) + v(k) i ∈ N (8.36)

Let the initial state, the process disturbance and all the measurement noises

be normally distributed. It is convenient to use the information filter recursion,

dicussed in Section 8.3.1. Assuming that at time k, in each node i ∈ N , the

local information pair (Ωi(k|k − 1), qi(k|k − 1)) is available, the correction

can be written as
Ωi(k|k) = Ωi(k|k − 1) + (Ci)

′
(Ri)

−1
Ci

qi(k|k) = qi(k|k − 1) + (Ci)
′
(Ri)

−1
zi(k)

(8.37)

and the prediction is
Ωi(k + 1|k) = Q−1 −Q−1A

[
Ωi(k|k, L) + A

′
Q−1A

]−1
A
′
Q−1

qi(k + 1|k) = Q−1A
[
Ωi(k|k, L) + A

′
Q−1A

]−1
qi(k|k, L)

(8.38)

Note that the matrix Q has to be invertible so that equations in (8.38) make

sense. Using the above information filter as well as consensus (8.29)-(8.30),

the algorithm for distributed state estimation (Algorithm 7) at each time

k = 0, 1, . . . , and for each node i ∈ N , performs the following steps

1. The local set of measurements zi(k) is collected and the local information

pair (Ωi(k|k− 1), qi(k|k− 1)) is updated using equation (8.37), in order

to obtain the local posterior information pair (Ωi(k|k, 0), qi(k|k, 0)).

2. For ` = 0, 1, . . . , L− 1 the following consensus steps are performed
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• Information (Ωi(k|k, `), qi(k|k, `)) is exchanged between neighbors.

Node i transmits its data to nodes j such that i ∈ N j.

• Node i waits for data to be received from each node j ∈ N i.

• Next, the fusion is carried out in node i as follows

Ωi(k|k, `+ 1) =
∑
j∈N i

πi,j Ωj(k|k, `) ` = 0, . . . , L− 1

qi(k|k, `+ 1) =
∑
j∈N i

πi,j qj(k|k, `) ` = 0, . . . , L− 1

(8.39)

to obtain the fused information pair

(Ωi(k|k), qi(k|k)) , (Ωi(k|k, L), qi(k|k, L)). (8.40)

3. Finally, the local prior information pair (Ωi(k + 1|k), qi(k + 1|k)) is cal-

culated from (Ωi(k|k, L), qi(k|k, L)) via the prediction equations (8.38).

99



Algorithm 7 CONSENSUS-IF

1: function CONSENSUS-IF(Ωi(0| − 1), qi(0| − 1))

2: for all time k = 0, 1, 2, . . . do

Correction

3: Ωi(k|k) ←− Ωi(k|k − 1) + (Ci)
′
(Ri)

−1
Ci

4: qi(k|k) ←− qi(k|k − 1) + (Ci)
′
(Ri)

−1
zi(k)

5: Ωi(k|k, 0) ←− Ωi(k|k)

6: qi(k|k, 0) ←− qi(k|k)

7:

[
Ωi(k|k, L), qi(k|k, L)

]
←− consensusOnInformation

8: x̂i(k|k) ←− [Ωi(k|k, L)]
−1
qi(k|k, L)

Prediction

9: Ωi(k + 1|k) ←− Q−1 −Q−1A
[
Ωi(k|k, L) + A

′
Q−1A

]−1
A
′
Q−1

10: qi(k + 1|k) ←− Q−1A
[
Ωi(k|k, L) + A

′
Q−1A

]−1
qi(k|k, L)

11: x̂i(k + 1|k) ←− [Ωi(k + 1|k)]
−1
qi(k + 1|k)

12: end for

13: return prediction and correction sequence of [x̂, P ]

14: end function
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Algorithm 8 consensusOnInformation

1: function consensusOnInformation(Ωi(k|k, 0), qi(k|k, 0))

2: for all consensus steps ` = 0, 1, 2, . . . , L− 1 do

3: transmit
(
qi(k|k, `), Ωi(k|k, `)

)
4: wait until ∀j ∈ N i,

[
qj(k|k, `), Ωj(k|k, `)

]
is received

5: for all i, j ∈ N i 6= j do

6: πi,j ←− 1

max (Ni, Nj)
7: end for

8: for all i ∈ N do

9: πi,i ←− 1−
∑

j∈N i j 6=i

πi,j

10: end for

11: Ωi(k|k, `+ 1) ←−
∑
j∈N i

πi,j Ωj(k|k, `)

12: qi(k|k, `+ 1) ←−
∑
j∈N i

πi,j qj(k|k, `)

13: end for

14: return
[
Ωi(k|k, L), qi(k|k, L)

]
15: end function

Note that the fusion of the information received from multiple sensors (8.39),

through a convex combination of the information matrices and vectors, co-

incides with the well-known Covariance Intersection fusion [19]. Therefore,

this fusion rule corresponds to a single step of the consensus algorithm which

computes, in a distributed fashion, the Kullback-Leibler average (KLA) of the

local posterior PDFs (the KLA of NS Gaussian PDFs can be simply obtained

by averaging their information matrices and information vectors). This is

discussed in [12].

In a distributed nonlinear state estimation, both correction and prediction

steps are performed using a nonlinear filter, such as UKF, instead of the

standard Kalman filter.
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So far, the single-target information fusion problem via consensus has been

addressed. The above discussion can be extended to the multitarget case

through random set theory, as described in [5]. Let f(X ) denote the multi-

object (or multitarget) density, which is the multitarget counterpart of the

state PDF in single-target tracking, such that∫
X
f(X )δX = 1 (8.41)

where X is the state space. Since the multiobject density involves a combina-

torial complexity, simpler, even if incomplete, characterizations are usually

adopted. For this reason, the first-order moment of the multiobject density,

called Probability Hypothesis Density (PHD), can be used instead. The PHD

function of X over X can be defined as

d(x) = n̄s(x) (8.42)

where n̄ is the expected number of targets and s(·) is a single-target PDF,

called location density.

Suppose that a multiobject density f i(X ), computed on the basis of the

information collected locally or propagated from other nodes, is available in

each node i of the sensor network. Then, in order to combine the information

from all neighboring nodes, a fusion step is carried out. Recalling the consensus

problem (8.17), the average of the local multiobject densities f i(X ) can be

defined as the weighted Kullback-Leibler average fKLA(X ), which turns out

to be given by [5]

fKLA(X ) =

∏
i

[
f i(X )

]ωi
∫ ∏

i

[
f i(X )

]ωi δX (8.43)

which corresponds to the normalized weighted geometric mean of the node

multiobject densities f i(X ). Note that ωi are weights satisfying

ωi ≥ 0,
∑
i

ωi = 1. (8.44)
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It is important to point out that the above fusion rule coincides with the Gen-

eralized Covariance Intersection (GCI) for multiobject fusion, first presented

by Mahler [24]. The term Generalized Covariance Intersection originates

from the fact that (8.43) is the multitarget counterpart of the fusion rule for

single-target PDFs (8.39), which is also a generalization of the Covariance

Intersection (CI), first devised for Gaussian PDFs [19]. Consider the estimates

x̂i, of the same quantity x, from multiple estimators and its corresponding

covariance P i, their CI fusion is given by

P =

[∑
i

ωi(P i)−1

]−1
x̂ = P

∑
i

ωi(P i)−1x̂i
(8.45)

The above fusion is equivalent to

p(x) =

∏
i

[
pi(x)

]ωi
∫ ∏

i

[
pi(x)

]ωi dx (8.46)

under the assumption of normally distributed estimates. Moreover, the above

equivalence is valid for any choice of the weights ωi satisfying (8.44) and only

if all estimates are consistent, so that, given

E
[
(x− x̂i)(x− x̂i)′

]
≤ P i ∀i (8.47)

then, also the fused estimates are consistent

E [(x− x̂)(x− x̂)′] ≤ P (8.48)

In (8.46) p(·) , (·; x̂i, P i) is the Gaussian PDF with mean x̂i and covariance

P i.

8.3.3 Gaussian Mixture Implementation

In the present work, the distributed multiobject fusion of the information

is performed adopting the Gaussian Mixture (GM) approach. This choice
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allows the avoidance of random set theory. Using the GM approach, the

location PDFs in (8.42) can be expressed as linear combinations of Gaussian

components, as follows

s(x) =

NG∑
j=1

αj N (x; x̂j, Pj) (8.49)

Consider two nodes a and b, which provide the two GM location densities

si(x) =

N i
G∑

j=1

αijN (x; x̂ij, P
i
j ) i = a, b (8.50)

Then, the fused location PDF is obtained as

s̄(x) =
[sa(x)]ω

[
sb(x)

]1−ω∫
[sa(x)]ω

[
sb(x)

]1−ω
dx

(8.51)

Note that the above fusion, which involves exponentiation and multiplication

of GMs, is not a Gaussian mixture. This can be demonstrated by the following

observations about basic operations with Gaussian components and mixtures:

• The power of a Gaussian component is a Gaussian component

[αN (x; x̂, P )]ω = αωκ(ω, P )N
(
x; x̂,

P

ω

)
(8.52)

where

κ(ω, P ) ,
[det(2πPω−1)]

1
2

[det(2πP )]
ω
2

(8.53)

• The product of Gaussian components is a Gaussian component, specifi-

cally for two components

α1N (x; x̂1, P1) · α2N (x; x̂2, P2) = α12N (x; x̂12, P12) (8.54)

where

P12 = (P−11 + P−12 )−1

x̂12 = P12(P
−1
1 x̂1 + P−12 x̂2)

α12 = α1α2N (x̂1 − x̂2; 0, P1 + P2)

(8.55)
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• From (8.54) and the distributive property, it follows that the product

of GMs is a GM. In particular, if sa(·) and sb(·) have Na
G and N b

G

components respectively, then the product sa(·)sb(·) will have Na
GN

b
G

components.

• The exponentiation of a GM does not, in general, return a GM.

As a result of the last observation, the fusion in (8.51) is not a GM. In

order to preserve a GM expression of the location PDF, even after the

fusion, the following approximation can be used, instead of the standard GM

exponentiation[
NG∑
j=1

αjN (x;xj, Pj)

]ω
∼=

NG∑
j=1

[αjN (x;xj, Pj)]
ω

=

NG∑
j=1

αωj κ(ω, Pj)N
(
x;xj,

Pj
ω

) (8.56)

Note that the above approximation is reasonable if the cross-products of the

different terms in the GM are negligible for all x. As a matter of fact, the

error in the approximation (8.56) decreases with the increase of the distance

between the confidence ellipsoids of the Gaussian components. The conditions

for the validity of (8.56) can be summarized using the Mahalanobis distance

in the following inequalities(x̂i − x̂j)′P−1i (x̂i − x̂j)� 1

(x̂i − x̂j)′P−1j (x̂i − x̂j)� 1
(8.57)

Therefore, the above expression can be used to approximate the fusion (8.51)

as follows

s̄(x) =

Na
G∑

i=1

Nb
G∑

j=1

αabijN (x; x̂abij , P
ab
ij )

∫ Na
G∑

i=1

Nb
G∑

j=1

αabijN (x; x̂abij , P
ab
ij )dx

(8.58)

105



where

P ab
ij =

[
ω(P a

i )−1 + (1− ω)(P b
j )−1

]−1
(8.59)

x̂abij = P ab
ij

[
ω(P a

i )−1x̂ai + (1− ω)(P b
j )−1x̂bi

]−1
(8.60)

αabij = (αai )
ω(αbj)

1−ωκ(ω, P a
i )κ(1− ω, P b

j )·

· N
(
x̂ai − x̂bj; 0,

P a
i

ω
+

P b
j

1− ω

)
(8.61)

Equations (8.58)-(8.61) perform CI fusion on any pair formed by a Gaussian

component of node a and a Gaussian component of node b. Note that the

coefficient αabij includes the factorN
(
x̂ai − x̂bj; 0, P a

i + P b
j

)
which represents the

distance between the two fusing components (x̂ai , P
a
i ) and (x̂bj, P

b
j ). Moreover,

it is important to point out that Gaussian components with small coefficients

αabij in (8.58), should be neglected. Specifically, fusing components whose

Mahalanobis distance falls below a given threshold, i.e.√
(xai − xbi)′

(
P a

1− ω +
P b

ω

)−1
(xai − xbi) ≤ γf (8.62)

can be removed. Clearly, in order to fuse information provided by more than

two sensors, the fusion (8.59) - (8.60) can be sequentially applied to every

possible pair of nodes, for a total of N − 1 times. The irrelevance of the

chronological order used in the fusion is guaranteed by both associative and

commutative properties of multiplication.

8.4 Consensus CJPDAF

In this section a solution to distributed multitarget tracking over a sensor

network is presented. The architecture of the filter has been developed taking

into account the following issues, already discussed throughout this thesis.

• Several measurements are detected for each track due to the presence

of clutter and each measurement might be validated for multiple tracks.
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Thus, a reliable and appropriate technique for multitarget data associa-

tion in clutter is required.

• Each node has limited computational and sensing (e.g. TOA, DOA

sensors) capabilities. Moreover, data transmission has to be limited

because it is the main responsible for energy consumption.

• Information has to be processed in a distributed fashion, without any

central unit and in a scalable way with respect to the network size.

• The single node is unaware of the network connections.

• The network can be formed by nonlinear sensors, hence a filter for

nonlinear estimation is required.

The idea has been to design a tracker which combines different techniques so

that each sub-problem can be solved. Taking into account the above consider-

ations, first, the Joint Probabilistic Data Association has been implemented

for measurement-to-track association, as it provides good performance in

presence of high clutter and noisy models. Hard decision approaches, such

as Global Nearest Neighbor, lack of robustness, and turn out to be more

appropriate in low-clutter environments. In addition, in order to reduce the

computational burden, the cheap version of JPDA (CJPDA) has been chosen.

The only difference with JPDA is that instead of exactly calculating the

association probabilities, the CJPDA approximates them. Nevertheless, it

provides a satisfactory association performance. Due to the fact that this

association method assumes that the track has been already initialized, also

a track initiator has been implemented. Tracks are created by two-point dif-

ferencing and subsequently confirmed through an M/N logic. The scalability

requirement excludes the centralized fusion from the possible solutions and

calls for a consensus approach in order to achieve global fusion over the whole
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network by iterating local fusion steps among neighboring nodes. Further-

more, the impossibility to single out common information between nodes,

requires robust fusion rules, such as Covariance Intersection (CI). Lastly, due

to the nonlinearity of the employed sensors, the Unscented Kalman Filter is

exploited in each sensor in order to update means and covariances.

Hence, the proposed Consensus CJPDAF approach exploits consensus in order

to provide a distributed, scalable solution and to guarantee computational

efficiency. In particular, two different variants of this approach are proposed.

The first one, simply named C-CJPDAF (Consensus-CJPDA Filter), carries

out a track-to-track association, via the solution of an assignment problem,

before fusion. Due to limited processing-communication capabilities of the

sensor network, parsimonious representations of the multitarget information

transmitted over the radio links, are required. For this reason, the other pro-

posed algorithm, named CGM-CJPDAF, relies on a Gaussian Mixture (GM)

representation of the multitarget information in order to reduce computational

and communication costs.

8.4.1 Consensus CJPDAF with Track-to-Track Associ-

ation (C-CJPDAF)

In this distributed multitarget tracking algorithm all the aforementioned

techniques are implemented. A brief description of the sequence of steps

included in the C-CJPDAF is in order:

1. Local UKF prediction. First, each node i performs a local prediction

of the state estimates and covariances corresponding to each confirmed

and preliminary track, exploiting the single-target dynamics and the

measurement equations.

2. Local measurement validation. The local measurement set Zi is

associated to existing tracks via a gating procedure based on the nor-
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malized squared innovation (6.12) and following the priorities discussed

in Section 6.1.2. In particular, there are two validation steps:

(a) Validation for confirmed tracks. Measurements Zi are asso-

ciated to confirmed tracks. Tracks may be deleted after a given

number of consecutive misdetections.

(b) Validation for preliminary tracks. Measurement validation

for the subset Zi
NC is then performed. A preliminary track, which

validates at least one measurement, can either be promoted to

confirmed track, or remain preliminary. The decision is taken by

the M/N logic. If no measurement is validated, the track can be

kept or deleted.

3. Local TPD gating. Tentative new tracks, created at the previous

scan, are compared to the subset Zi
NP of unassociated measurements,

in order to find matchings for the initialization of new tracks. New

preliminary tracks are not updated and they are directly deferred to

the next recursion.

4. Local CJPDA. The measurement-to-track association, which calcu-

lates the association probabilities for each track, is carried out following

the cheap joint probabilistic data association, described in Section 6.4.3.

The data association is performed for both confirmed and preliminary

tracks, whose validated measurements are collected in the same vector.

5. Local UKF correction. State estimates and covariances are cor-

rected through the unscented Kalman filter, exploiting the validated

measurements and the corresponding association probabilities, given,

respectively, by step 2 and 4. Once corrected the state estimates, tracks

exceeding a reasonable velocity limitation are terminated.
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6. Consensus. Each node i involves the subnetwork N i in order to

perform consensus. Specifically, the following operations take place:

(a) Information exchange. Each node exchanges information with

neighboring nodes. Agent i transmits its data to node j ∈ N j and

receives information from j ∈ N i.

(b) Track-to-track association. Once the information has been

exchanged between neighbors, each node carries out a pairwise

track-to-track association procedure, which is essentially an assign-

ment problem, as discussed in Section 8.2.2, that can exactly be

solved in polynomial time by the Hungarian method.

(c) CI fusion. When data originating from the same track have been

associated, the information is fused using equations (8.58)-(8.61).

After the fusion, confirmed tracks after consensus are displayed on screen,

and then they will start the local recursion for the following scan, together

with unassociated tracks in step 6(b), which are kept locally.

The C-CJPDAF steps are summarized in Algorithm 9. Note that, due to the

nonlinearity of the sensors used in Chapter 9 for simulations, local filtering is

carried out by the unscented Kalman filter, whose recursion can be reviewed

in Algorithm 3, Chapter 3.2.

Algorithm 9 C-CJPDAF

1: function C-CJPDAF(x̂(0|0), P (0|0))

2: for all time k = 1, 2, . . . do

3: (x̂(k|k − 1), P (k|k − 1)) ←− Local UKF Prediction

4: zl ∈ m(k) ←− Local Measurement validation

5: Local M/N logic
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6: for all unassociated measurements ∈ ZNP do

7: Local TPD gating

8: end for

9: for all validated measurements l = 1, . . . ,m(k) do

10: βl(k) ←− Local CJPDA

11: νl(k) ←− zl(k)− ẑ(k|k − 1)

12: end for

Local UKF Correction

13: Z(k|k − 1) ←− h(k,X (k|k − 1))

14: S(k) ←− Z(k|k − 1)WZ(k|k − 1)
′
+R(k)

15: T (k) ←− X (k|k − 1)WZ(k|k − 1)
′

16: K(k) ←− T (k)S(k)−1

17: ẑ(k|k − 1) ←− Z(k|k − 1)wm

18: ν(k) ←−
m(k)∑
l=1

βl(k)νl(k)

19: x̂(k|k) ←− x̂(k|k) = x̂(k|k − 1) +K(k)ν(k)

20: P c(k|k) ←− P (k|k − 1)−K(k)S(k)K(k)′

21: P̃ (k) ←− K(k)
[m(k)∑
l=0

βl(k)νl(k)νl(k)′ − ν(k)ν(k)′
]
K(k)′

22: P (k|k) ←− β0(k)P (k|k − 1) + [1− β0(k)]P c(k|k) + P̃ (k)

Consensus

23: for all consensus steps ` = 0, 1, . . . , L− 1 do

24: transmit
(
x̂i(k|k, `), P i(k|k, `)

)
25: wait until ∀j ∈ N i,

[
x̂j(k|k, `), P j(k|k, `)

]
is received

26: for all i, j ∈ N i 6= j do

27: πi,j ←− 1

max (Ni, Nj)
28: end for

29: for all i ∈ N do

30: πi,i ←− 1−
∑

j∈N i j 6=i

πi,j

31: end for
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32: Track-to-track association

CI fusion

33: Ωi(k|k, `+ 1) ←−
∑
j∈N i

πi,j Ωj(k|k, `)

34: qi(k|k, `+ 1) ←−
∑
j∈N i

πi,j qj(k|k, `)

35: end for

36: end for

37: return
[
Ωi(k|k, L), qi(k|k, L)

]
38: end function

8.4.2 Consensus CJPDAF with Gaussian Mixture im-

plementation (CGM-CJPDAF)

The only differences between this algorithm and the CGM-CJPDAF are the

following

• A Gaussian Mixture implementation for distributed fusion is used in

order to reduce computational and communication costs. Specifically,

the processed information in each node is expressed as a Gaussian

mixture, defined in (8.49), whose Gaussian components are the posterior

PDFs of each track. All the mixture weights αj get the same value

1/NG, so that the constraint
∑NG

j=1 αj = 1 is satisfied. Once the data has

been exchanged with neighbors, Gaussian components of neighboring

nodes are fused together.

• Track-to-track association is not performed as in Section 8.4.1. Instead,

a gate (8.62) is set up in order to prevent the fusion between Gaussian

components not originating from the same track. This gate simply

compares the statistical distance between two Gaussian components

with a given threshold.
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CGM-CJPDAF can be also be described by the same steps 1, 2, 3, 4, 5 as in

C-CJPDAF. Then consensus takes place as follows:

6. Consensus. Each node i involves the subnetwork N i in order to

perform consensus. Specifically, the following operations take place:

(a) Information exchange. Each node exchanges information (GM

representation of the tracks) with neighboring nodes. Agent i

transmits its data to node j ∈ N j and receives information from

j ∈ N i.

(b) GM-GCI fusion. Gaussian components whose Mahalanobis

distance falls inside the gate limited by a given fusion threshold,

are fused together using the equations (8.58)-(8.61).

After the fusion, confirmed tracks are displayed on screen, and then they will

start the local recursion for the following scan, together with unassociated

tracks and any track received from the neighbors. As a matter of fact,

Gaussian components representing unassociated confirmed tracks are kept

locally for a certain number of time intervals.

In Algorithm 10, the pseudo-code summarizes the CGM-CJPDAF recursion,

for each node and each track. Note that the term si(x, `) denotes the Gaussian

mixture corresponding to node i, `− th consensus step and time k (which is

not indicated).

Algorithm 10 CGM-CJPDAF

1: function CGM-CJPDAF(x̂(0|0), P (0|0))

2: for all time k = 1, 2, . . . do

3: (x̂(k|k − 1), P (k|k − 1)) ←− Local UKF Prediction

4: zl ∈ m(k) ←− Local Measurement validation

5: Local M/N logic
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6: for all unassociated measurements ∈ ZNP do

7: Local TPD gating

8: end for

9: for all validated measurements l = 1, . . . ,m(k) do

10: βl(k) ←− Local CJPDA

11: νl(k) ←− zl(k)− ẑ(k|k − 1)

12: end for

Local UKF Correction

13: Z(k|k − 1) ←− h(k,X (k|k − 1))

14: S(k) ←− Z(k|k − 1)WZ(k|k − 1)
′
+R(k)

15: T (k) ←− X (k|k − 1)WZ(k|k − 1)
′

16: K(k) ←− T (k)S(k)−1

17: ẑ(k|k − 1) ←− Z(k|k − 1)wm

18: ν(k) ←−
m(k)∑
l=1

βl(k)νl(k)

19: x̂(k|k) ←− x̂(k|k) = x̂(k|k − 1) +K(k)ν(k)

20: P c(k|k) ←− P (k|k − 1)−K(k)S(k)K(k)′

21: P̃ (k) ←− K(k)
[m(k)∑
l=0

βl(k)νl(k)νl(k)′ − ν(k)ν(k)′
]
K(k)′

22: P (k|k) ←− β0(k)P (k|k − 1) + [1− β0(k)]P c(k|k) + P̃ (k)

Consensus

23: si(x, `) ←−
(
x̂i(k|k), P i(k|k)

)
24: for all consensus steps ` = 0, 1, . . . , L− 1 do

25: transmit
(
si(x, `)

)
26: wait until ∀j ∈ N i,

[
sj(x, `)

]
is received

27: for all i, j ∈ N i 6= j do

28: πi,j ←− 1

max (Ni, Nj)
29: end for
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30: for all i ∈ N do

31: πi,i ←− 1−
∑

j∈N i j 6=i

πi,j

32: end for

33: s̄i(x, `+ 1) ←− GCI fusion

34: end for

35: end for

36: end function

8.4.3 Distributed Track Initialization for Incomplete

Measurements

In multitarget multisensor tracking, the sensor network can be formed for

instance by range-only (TOA) and/or bearing-only (DOA) sensors which,

as discussed in Section 5.2 and Section 5.3 respectively, are characterized

by limited sensing capabilities. In particular, a single distance or angle

measurement is an incomplete observation, since it does not fully specify a

position in Cartesian coordinates, from which new tracks can be initialized.

Thus, track initialization cannot be carried out as described in Section 6.1 for

RADAR sensors, but an additional procedure is required before techniques

as the two-point differencing (Section 6.1.1) can be applied to generate new

tracks. When the measurement equation provides only distance or angle

information, fusion is required among multiple nodes, in order to counteract

the lack of target observability from a single node. In this section, the

problem of track initialization in multitarget multisensor scenarios in presence

of incomplete measurements is addressed.

The described approach can associate and fuse measurements from spatially

distributed neighboring sensors in order to detect real targets within the

surveillance region and initialize their tracks. A probabilistic grid representa-
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tion is used [13, 32], which comes from the concept of occupancy grid, first

introduced by Moravec and Elfes for robotic mapping [25]. This approach has

been widely used for environment modeling in robotics due to the simplicity

of its implementation [9]. The basic idea is to divide the measurement space

into a grid of equally sized spatial cells and associate each measurement

with the probability that the target is located in a particular cell of the grid.

This method is then used to combine data from multiple sensor locations,

by projecting measurements of a common quantity onto a two-dimensional

probability mass grid. This is used to determine the most likely coordinates

of the object being measured.

The sensor measurement of the quantity of interest can be modeled by a Gaus-

sian probability mass function over the range of possible values. Subsequently,

by adding the independent PDFs, sampled at common discrete intervals, of all

measurements taken from a single sensor, a discrete probability distribution

is obtained. Then, the PMFs of all neighboring sensors can be combined

together, in order to form a joint discrete probability matrix. Finally the

target localization problem is converted to a local maxima problem in the

probabilistic grid. Using this method, distance and angle measurements from

different sensors can be combined together to get the measurement of a target

in a Cartesian coordinate system.

Consider a surveillance area of A×B [m]. Choosing an appropriate dimension

of the grid d, the surveillance region can be divided into KA × KB grids,

where KA = A/d, KB = B/d. Thus each pair (a, b) represents a specific cell,

whose center point is Cab = (Cxab , Cyab). Note that the value of d is important

because it directly impacts the accuracy and computational cost of combining

multiple measurements.

Given a measurement zim, the probability of being originated from a target
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located in the center point of cell (a, b) is defined as follows

P i
m(a, b) = N (zim; ziab, R

i) (8.63)

where (a, b) denotes both the cell and the corresponding center point Cab,

since we consider for each cell only the PDF evaluated in the center point.

Note that ziab denotes the virtual measurement associated to (a, b), i.e. ziab =
√

(Cxab − pix)
2 + (Cyab − piy)

2 TOA

ziab = ∠[(Cxab − pix) + j(Cyab − piy)] DOA
(8.64)

where pi = (pix, p
i
y) is the known position of sensor i.

The discrete probability matrix is formed by evaluating P i
m(a, b) at discrete

points in each cell of the grid. Thus, given a measurement m of the i-th

sensor, one has

F i
m =



P i
m(a, b)

KA∑
r=1

KB∑
c=1

P i
m(r, c)

∀(a, b)

0 otherwise

(8.65)

For each measurement of each sensor, using one of the (9.9), the probability

(8.65) can be calculated. Thus, for each sensor i providing M i measurements,

the probability distribution of all measurements acquired by the i-th sensor is

F i =
P i(a, b)

KA∑
r=1

KB∑
c=1

P i(r, c)

(8.66)

where

P i(a, b) =
M i∑
m=1

P i
m(a, b) (8.67)

Then, in order to combine information from all neighboring nodes, a fusion

step is carried out. Recalling the consensus problem (8.17), one has

P̄ (a, b) =
[P i(a, b)]

ω
[P j(a, b)]

1−ω

KA∑
r=1

KB∑
c=1

[
P i(a, b)

]ω [
P j(a, b)

]1−ω i, j ∈ N , ω ∈ (0, 1) (8.68)
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Finally, the regional average computed in node i is

P̄ i(a, b) =

∏
j∈N i

[
P̄ j(a, b)

]ωi,j
KA∑
r=1

KB∑
c=1

∏
j∈N i

[
P̄ j(r, c)

]ωi,j (8.69)

where the consensus weights must fulfill the following conditions
ωi,j ≥ 0 ∀i, j ∈ N∑
j∈N i

ωi,j = 1 ∀i ∈ N (8.70)

In conclusion, the target localization problem can be solved by finding the

local maximums in the grid. As a matter of fact, peaks represent the estimated

position of targets. Consequently, the number of peaks can be considered

as the number of targets (under the assumption of no clutter). Clearly, in

presence of clutter, an additional track confirmation logic, such as M/N, is

needed for track confirmation, in order to reduce the number of false tracks

initialized.
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Chapter 9

Simulation Experiments

In order to evaluate the performance of the algorithms described in Chapters 7

and 8, simulation experiments have been carried out in realistic scenarios. The

obtained results will be shown and discussed. In particular, the performance of

the proposed distributed CGM-CJPDAF algorithm, presented in Section 8.4.2,

is first compared with C-CJPDAF (Section 8.4.2 ). Next, it is compared

with both centralized Sequential CJPDAF (S-CJPDAF, Section 7.4) and the

single-sensor CJPDAF algorithm running locally (L-CJPDAF). Moreover,

the performance of CGM-CJPDAF will be examined, in a network of TOA

and DOA sensors. The evaluation is carried out by Monte Carlo simulations,

so that any performance metric is averaged over a sufficiently high number

NMC of Monte Carlo runs relative to independent noise realizations. Tracking

performance will be evaluated in terms of position and velocity error, track

fragmentation and quickness in initializing new tracks. In addition, robustness

with respect to uncertainties on the parameters of the scenario (detection

probability PD and false alarm probability PFA) is examined. To this end,

the evaluation metrics used in the following simulations are

• Root Mean Square Error (RMSE)

• Track continuity
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• Average Track Confirmation Time (ATCT)

The position RMSE is calculated as follows

PRMSE(k) =

=

√√√√ 1

NT NS NMC

NMC∑
n=1

N∑
i=1

NT∑
j=1

(
pxj(k, n)− p̂ixj(k|k, n)

)2
+
(
piyj(k, n)− p̂iyj(k|k, n)

)2
(9.1)

where NT is the number of targets, NS is the number of nodes and NMC

is the number of Monte Carlo simulations, carried out for the same target

trajectories but different, independently generated, clutter and measurement

noise realizations. Clearly, pj(k, n) denotes the position of the true target j

at scan k, during the n-th Monte Carlo run, whereas p̂ij(k|k, n) is the position

of track j, estimated by sensor i. Similarly, the RMSE on velocity is

V RMSE(k) =

=

√√√√ 1

NT NS NMC

NMC∑
n=1

N∑
i=1

NT∑
j=1

(
vxj(k, n)− v̂ixj(k|k, n)

)2
+
(
viyj(k, n)− v̂iyj(k|k, n)

)2
(9.2)

RMSE evaluates the goodness of estimation once the target has been localized,

but this metric is not useful to determine whether there are interruptions

along the track. To this end, track continuity is computed. It accounts for

the percentage of target trajectory which is really tracked, so that fragmented

tracks will result in a low track continuity value. Both track continuity

and RMSE are evaluated following the track-to-truth assignment method,

discussed in [10] and [15]. The basic idea is that first a measure of fit

(MOF) between confirmed tracks and truth is computed. Next, those pairings

satisfying an acceptance criterion for the MOF, are placed in a global track-to-

truth assignment matrix. Note that the assignment solution can be computed

using methods such as the auction or the Hungarian algorithms, as mentioned

in Section 8.2.3. The recommended MOF is the kinematic statistical distance
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between the current track state estimate and truth, defined by

d2 , x̃′P−1pv x̃ (9.3)

where x̃ is the vector of position and velocity differences and Ppv is the

Kalman filter covariance matrix, containing position and velocity variances

and covariances. Comparing the normalized distance (9.3) with a gate value

γA, track-to-truth pairings are obtained. Thanks to this association, RMSE

and track continuity can be calculated. In particular, position and velocity

errors are calculated for each track-to-truth matching and track continuity is

determined by giving a numerical score to each Monte Carlo run. A point is

awarded at each time interval to each target for which the currently assigned

track is the same as the one at the previous time. No points are awarded

if there is no assigned track or if a switch occurred over the time interval.

Therefore, track switching is penalized as well as tracking errors that are

larger than those predicted by the covariance matrix. They cause a failure

of the gate test that uses the distance defined in (9.3). As a matter of fact,

failure of the gate test results in the loss of of two points since both the

current time interval and the next are affected. The Measure Of Effectiveness

(MOE) defined above can be easily converted to a correct tracking percentage,

by computing the ratio between the total score and the possible score.

Once defined the metrics used for performance evaluation, let us now consider

the multitarget tracking scenarios examined in the simulations. All the

scenarios, listed below, are 2-dimensional (planar) and dynamic, so that

different targets enter the surveillance area at different time instants:

1. Air surveillance: the scenario is characterized by the presence of

three targets appearing in the surveillance region of 50 × 50 [km2],

wherein two radars are deployed.

2. Ground surveillance: a sensor network, formed by one bearing-only
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(DOA) and two range-only (TOA) sensors, tracks three vehicular targets

over a surveillance area of 5× 5 [km2].

In the following 2D multitarget simulations, the target state consists of

Cartesian position and velocity components along the two axes x and y. The

motion of each target is modeled according to the nearly-constant velocity

model:

x(k + 1) =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

x(k) + w(k) (9.4)

where T is the sampling interval and w(k) is a zero-mean white process noise

with covariance matrix

Q = σ2
w


1
4
T 4 1

2
T 3 0 0

1
2
T 3 T 2 0 0

0 0 1
4
T 4 1

2
T 3

0 0 1
2
T 3 T 2

 (9.5)

where σw = 2[m/s2].

Sensors are characterized by non unity detection probability PD and generate

clutter, which is modeled as a Poisson Process with parameter λ (clutter

density, given by (5.14)) and uniform spatial distribution over the surveillance

region.

Scenario 1

In this first scenario there are two RADAR sensors linked in a geometric

network, providing measurements of range and azimuth. The measurement

equation is given by

zi =

ri
θi

+ vi = hi(x) + vi (9.6)
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where

vi ∼ wn(0, Ri) (9.7)

and the measurement function is

hi(x) =


√

(px − pix)2 + (py − piy)2

∠[(px − pix) + j(py − piy)]
(9.8)

pi is the position of sensor i in Cartesian coordinates. For this scenario

p1 = (0, 0); p2 = (50000, 50000). Both range and azimuth errors are assumed

independent, so that R = diag{σ2
r , σ

2
θ}, σr and σθ being the standard devia-

tions of range and, respectively, azimuth measurement noise. Their values in

this scenario are the same for both sensors, in particular σr = 100 [m] and

σθ = 1 [◦]. Due to the nonlinearity of the sensor, UKF (Section 3.2) is used in

each sensor.

In the scenario under consideration three targets with nearly-constant velocity

motion appear in the surveillance area in different time instants, as shown in

Figure 9.1. The duration of each simulation is fixed to 300 [s] (100 samples).
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Figure 9.1: Target trajectories in Scenario 1.
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The proposed algorithm CGM-CJPDAF (Section 8.4.2) is first compared to

the analogous C-CJPDAF-T2TA (Section 8.4.1) which, before consensus takes

place, carries out a track-to-track association procedure. The parameters

used in simulations for Scenario 1 are reported in Table 9.1.

Parameter Description Value

PD probability of detection 0.9

PG gating probability 0.9997

λ clutter density 5

M/N confirmation logic 2/3

N2 track deletion threshold 5

γ validation gate threshold 16

T sampling time 3 [s]

NT number of targets 3

NS number of nodes 2

NMC number of MC runs 300

σr range measurement std. dev. 100 [m]

σθ angle measurement std. dev. 1 [◦]

σw process noise std. dev. 2 [m/s2]

Table 9.1: Parameters adopted in Scenario 1 simulations.

Multitarget tracking performance is evaluated in terms of position and velocity

RMSE, track continuity and average time for track confirmation. Table 9.5

shows a comparison between CGM-CJPDAF and C-CJPDAF-T2TA in terms

of track continuity and ATCT. Figure 9.2 and Figure 9.3 show position RMSE

and velocity RMSE, respectively.
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Statistics C-CJPDAF-T2TA CGM-CJPDAF

track continuity 0.887 0.868

ATCT 10.006 11.097

Table 9.2: CGM-CJPDAF vs C-CJPDAF-T2TA: Track continuity and ATCT.
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Figure 9.2: Comparison between CGM-CJPDAF and C-CJPDAF-T2TA: Position

RMSE.

125



0 50 100 150 200 250 300
0

20

40

60

80

100

time (s)

V
el

oc
ity

 R
M

S
E

 (
m

/s
)

 

 

   C CJPDAF T2TA

   CGM CJPDAF

Figure 9.3: Comparison between CGM-CJPDAF and C-CJPDAF-T2TA: Velocity

RMSE.

As shown in Figure 9.2 and Figure 9.3, the performance obtained with the

two filters are very similar, as expected. This means that in the scenario

under consideration both algorithms manage to ”recognize” and thus fuse the

same tracks obtained locally and received by the other sensor. Both filters

perform a single consensus step.

Once verified that CGM-CJPDAF and C-CJPDAF-T2TA present analogous

performance, CGM-CJPDAF is compared with the centralized Sequential

CJPDAF (S-CJPDAF) and the single-sensor CJPDAF, in order to complete

the evaluation. In Figure 9.4, Figure 9.5 and Table 9.3 the different metrics

are illustrated for the three filters.
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Figure 9.4: Comparison between CGM-CJPDAF, S-CJPDAF and L-CJPDAF:

Position RMSE. PD = 0.9.
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Figure 9.5: Comparison between CGM-CJPDAF, S-CJPDAF and L-CJPDAF:

Velocity RMSE. PD = 0.9.

These results show that, by applying consensus, performance of distributed

algorithms is comparable to the one provided by the centralized tracker S-

CJPDAF, which collects the set of measurements of two sensors in a central

node. In addition, CGM-CJPDAF succeeds in improving the performance

of L-CJPDAF, which is the algorithm carried out locally, in a single sensor.

127



Statistics L-CJPDAF CGM-CJPDAF S-CJPDAF

PRMSE 320.084 144.405 132.385

track continuity 0.982 0.868 0.834

ATCT 5.867 11.097 6.303

Table 9.3: CGM-CJPDAF vs C-CJPDAF-T2TA: Track continuity and ATCT.

Note that, compared to L-CJPDAF and S-CJPDAF, CGM-CJPDAF is

characterized by a higher average time for track confirmation.

Next, simulations have been carried out for target detection probability

PD = 0.8.

Parameter Description Value

PD probability of detection 0.8

PG gating probability 0.9997

λ clutter density 5

M/N confirmation logic 2/3

N2 track deletion threshold 5

γ validation gate threshold 16

T sampling time 3 [s]

NT number of targets 3

NS number of nodes 2

NMC number of MC runs 300

Table 9.4: Parameters adopted in Scenario 1 simulations, PD = 0.8.
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Figure 9.6: Comparison between CGM-CJPDAF, S-CJPDAF and L-CJPDAF:

Position RMSE. PD = 0.8.
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Figure 9.7: Comparison between CGM-CJPDAF, S-CJPDAF and L-CJPDAF:

Velocity RMSE. PD = 0.8.

Statistics L-CJPDAF CGM-CJPDAF S-CJPDAF

track continuity 0.951 0.819 0.760

ATCT 6.200 13.654 9.431

Table 9.5: CGM-CJPDAF vs C-CJPDAF-T2TA: Track continuity and ATCT.

PD = 0.8.
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Scenario 2

In this scenario the sensor network is formed by one bearing-only and two

range-only sensors, characterized by the following measurement functions:hi(x) =
√

(px − pix)
2 + (py − piy)

2 TOA

hi(x) = ∠[(px − pix) + j(py − piy)] DOA
(9.9)

The standard deviation of DOA and TOA measurement noises are taken

respectively as σθ = 1[◦] and σr = 10[m].

The scenario under consideration is depicted in Figure 9.8. Three targets with

nearly-constant velocity motion appear in the surveillance area of 5× 5 [km2]

in different time instants. The sampling interval is T = 5 [s]. The duration of

each simulation is fixed to 400 [s] (80 samples).
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Figure 9.8: Target trajectories in Scenario 2.

For this scenario distributed track initialization based on probability grids,

described in Section 8.4.3, has been implemented, due to the fact that TOA

and DOA sensors provide incomplete measurements i.e. the single node lacks

of target observability. The parameters used in this simulation are reported

in Table 9.6. The grid has been divided into 400 cells of 250× 250 [m2].
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Multitarget tracking performance is evaluated in terms of position and velocity

RMSE, averaged over NMC = 100 Monte Carlo runs for the same target

trajectories but different, independently generated, clutter and measurement

noise realizations.

Parameter Description Value

PD probability of detection 0.99

PG gating probability 0.9997

λ clutter density 1

M/N confirmation logic 2/3

N2 track deletion threshold 2

γ validation gate threshold 16

T sampling time 5 [s]

NT number of targets 3

NS number of nodes 3

NMC number of MC runs 100

σr range measurement std. dev. 10 [m]

σθ angle measurement std. dev. 1 [◦]

σw process noise std. dev. 2 [m/s2]

Table 9.6: Parameters adopted in Scenario 2 simulations.

As shown in Figure 9.9 and Figure 9.10, the algorithm implementing a

probability grid approach for track initialization, confirms good performance

in a low-density clutter scenario.
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Figure 9.9: Probability Grid Initialization: Position RMSE.
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Figure 9.10: Probability Grid Initialization: Velocity RMSE.
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Chapter 10

Conclusions

This thesis has considered the multitarget multisensor tracking problem. This

essentially concerns the joint detection and estimation of the unknown and

time-varying number of targets in the scenario, as well as the estimation

of the kinematic state of each target, given a sequence of observation sets.

Multitarget multisensor tracking problems can be tackled in essentially two

ways:

• by centralized architectures, in which a central data processor receives

all the measurements;

• by distributed approaches that carry out scalable processing without

coordination of a central unity.

The focus of this dissertation has been on distributed multitarget tracking of

multiple targets over a sensor network. In particular, consensus algorithms,

capable of providing fully distributed and scalable fusion of the information

collected from multiple sensors in presence of clutter and noisy observations,

were considered. A comparison of both C-CJPDAF and CGM-CJPDAF with

a sequential centralized filter, has shown that the two methods developed in

this thesis give comparable performance to conventional methods of multiple
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target tracking using a central data processor. Furthermore, it is shown

that the proposed distributed multitarget trackers can successfully track the

correct targets in reasonably high levels of clutter.

In order to solve the distributed multitarget tracking problem, several issues

have been encountered. These sub-problems have been progressively addressed

throughout the whole thesis and their solutions have been subsequently

combined in the proposed distributed algorithms.

First, multitarget tracking has been considered, which is essentially the combi-

nation of data association and estimation. Due to the employment of nonlinear

sensors, discussed in Chapter 5, recursive nonlinear estimation (Chapter 3)

is needed. Specifically, the Unscented Kalman Filter (UKF) has been imple-

mented for target state estimation. Regarding data association, Probabilistic

and hard-decision single-scan techniques have been described throughout

Chapter 6. Particular interest has been given to Bayesian approaches for

multiple target data association, which is carried out in each node of the

network. To this end, an approximated version of Joint Probabilistic Data

Association (CJPDAF), that reduces computational burden, has been used

in the local trackers.

Next, the resulting data processing in each node has been further developed in

order to extend the multitarget tracking problem to a multisensor environment.

Consensus has been implemented, i.e. the information between neighboring

nodes is collected in each sensor, and a distributed fusion, which guarantees

scalability, takes place. Furthermore, a new method for track initialization,

based on probability grids, has been proposed for distributed multitarget

problems in which sensor networks are characterized by limited sensing

capabilities. In conclusion, simulation results are provided in Chapter 9 in

order to demonstrate the effectiveness of the proposed distributed multitarget

tracking algorithms for tracking multiple targets over sensor networks.
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Possible topics for future work are:

• Extension to sensors with different field of view (FOV);

• Further investigations on track initialization for incomplete measure-

ments;

• Comparison with distributed CPHD filtering techniques [5].
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