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Abstract

This work addresses fundamental challenges underlying dynamic field esti-

mation, i.e. the problem of estimating a spatially distributed time-varying

field of interest from noisy measurements collected by a wireless sensor net-

work deployed over an area to be monitored. This is clearly an infinite-

dimensional estimation problem, which is intrinsically dynamic since spatio-

temporal (non steady-state) dynamics are explicitly taken into account.

Most physical phenomena are inherently spatially distributed systems gov-

erned by partial differential equations (PDEs). Particular focus is on dis-

tributed estimation of time-evolving and space-dependent fields for which

fully scalable (with respect to the spatial domain) filters are proposed by

suitably adapting the parallel Schwarz domain decomposition method. The

original infinite-dimensional filtering problem is approximated into a, possi-

bly large-scale, problem of finite dimension, through the finite element (FE)

method. Combining the aforementioned key ingredients, a novel distributed

finite element Kalman filter (FE-KF) has been proposed and stability re-

sults have been provided. The presence of unknown sources (e.g. of heat,

polluting agents, etc.) can pose difficulties in reconstructing the target field.

To this end, the source estimation problem is considered, which consists of

detecting and localizing a concentrated diffusive source as well as estimating

its intensity and induced field. Two field estimation strategies which are

robust with respect to the presence of unknown moving and, respectively,

motionless sources have been designed, by recasting the source localization

as a multiple-model filtering problem and by using the FE method for space-

discretization of the resulting field dynamics. The concept of source identifi-

ability has also been defined and system-theoretic conditions in terms of rank

tests have been derived. Furthermore, the challenging problem of performing

low-cost, energy-efficient, dynamic field estimation adopting binary sensor

networks, and thus with a minimal amount of available information, is ad-

dressed. Relying on the so-called noise-aided paradigm, a novel optimization

strategy based on a Moving-Horizon (MH) approximation of the Maximum

A-posteriori Probability (MAP) estimation is presented. A final challenge ad-

dressed is introduced by unprecedented security issues potentially targeting

next-generation monitoring systems, subject to malicious cyber and physical

attacks. Attack-resilient strategies for secure dynamic field estimation have

been formulated and solved following a stochastic Bayesian approach.
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Chapter 1

Introduction

1.1 The problem of dynamic field estimation

Recent technological advances in wireless sensor networks (WSNs) have en-

abled the deployment of a large number of low-cost networked sensors for

real-time monitoring of spatially distributed physical processes over an area

of interest. Spatially distributed systems are processes governed by partial

differential equations (PDEs) modelling various real-world physical systems.

Rapid, accurate and reliable estimation of such spatially-varying phenomena

evolving over time is of paramount importance in a multitude of monitor-

ing/control application domains.

Typical examples include, but are not limited to: i) weather analysis and

prediction [2] that usually requires the solution of a very large data-fitting

problem involving a set of partial differential equations that models the evo-

lution of the atmosphere; ii) environmental monitoring (e.g., monitoring of

pollutants [3], of wildfires in forests [4], of volcanic eruptions via seismic

activity [5], forecasting of the triggering and propagation of landslides [6]);

iii) oceanography [7]; iv) smart (energy-efficient) buildings [8] equipped with

heating, ventilation and air conditioning (HVAC) control and occupancy es-

timation systems; v) smart grids [9] with partial differential equations repre-

senting the temperature distribution evolution of thermostatically controlled

loads (TCLs); vi) traffic monitoring [10]; vii) water flow regulation [11]; viii)

structural health monitoring [12]; ix) adaptive optics [13].

Based on the above practical motivations, the aim of this dissertation is

to address dynamic field estimation, i.e. the problem of estimating a spa-

1



2 Introduction

tially distributed time-varying field of interest (a physical quantity such as

temperature, concentration, pressure) from noisy measurements collected by

a wireless sensor network. This is clearly an infinite-dimensional estima-

tion problem, which is intrinsically dynamic since non steady-state spatio-

temporal dynamics are explicitly taken into account.

The problem of state estimation of systems distributed over a large geo-

graphical region has been extensively studied in the finite-dimensional liter-

ature, in the context of linear and nonlinear state estimation of large-scale

systems [14–20]. Such systems are possibly (but not necessarily) originated

from spatial discretization of PDEs. Hence, rather than considering the

infinite-dimensional field, these works are only interested in a finite (possi-

bly high-dimensional) collection of field samples, so that a preceding spatial

discretization is only implicitly assumed. Indeed, by standard discretiza-

tion of the PDE operator, the field of interest can usually be represented

as a combination of basis function coefficients [17, 20] leading to a lumped-

parameter system. In [21], the spatially distributed process are modeled as

random fields, estimated via Kriging interpolation so that the mean function

of the Gaussian process is a combination of basis functions. In other works,

numerical methods, such as the Godunov scheme for traffic estimation [22]

and the explicit Lax diffusive scheme for flow estimation [23], have been used

for the approximation of the field.

For the very large non-linear systems arising in the environmental sci-

ences such as weather forecasting and oceanography, characterized by multi-

scale and usually unstable and/or chaotic dynamics, many traditional state-

estimation techniques are not practicable and data assimilation schemes have

been proposed [24], [25]. To deal with the huge dimensionality of the result-

ing state vector, appropriate reduced-order filtering techniques with lower

computational load have been suitably developed [26].

Significantly less effort has been devoted to the more challenging case

of distributed-parameter systems, with only few works dealing with field

monitoring over sensor networks. Interesting contributions have focused on

extending the design of centralized/distributed filters for systems modelling

spatially distributed processes from the finite-dimensional literature (see e.g.,

[27], [28]). In this case, the design of state estimators/observers is usually

carried out in an abstract infinite-dimensional framework with no interest

on the finite-dimensional approximation that is, however, crucial to practical

filters’ implementation.
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1.2 Field monitoring in complex environments

With the advent of novel wireless sensor network technologies and solutions,

unprecedented fundamental challenges will be inevitably introduced in mod-

ern and next-generation monitoring systems for dynamic field estimation.

In order to enhance the performance of such systems, in this work the com-

plexity of the environment is considered by taking into account the following

challenges:

• scalability: due to their spatially distributed nature and their very

complex dynamics, it is typically more convenient (but clearly more

challenging) to undertake a decentralized approach for state estima-

tion of distributed-parameter systems, which allows for scalability of

computation with respect to the problem size (spatial domain). This

can be achieved by decomposing the original system into smaller sub-

systems which can be monitored locally within a restricted region of

competence.

• robustness: the task of dynamic field estimation becomes much more

challenging in the presence of unknown sources altering the field. This

is the reason why it is relevant to design estimation strategies which

are robust with respect to the presence of unknown inputs affecting the

spatially distributed system under monitoring. Robust field estimators

will be therefore capable of detecting and localizing the unknown source

as well as estimate its intensity and the source-induced field.

• energy-efficiency: energy consumption is one of the core issues in

WSNs, especially in applications involving numerous geographically

dispersed sensors with limited power and hence communication re-

sources. The most challenging solution to tackle the energy consump-

tion problem is to adopt binary sensor networks that transmit binary

measurements conveying a minimal amount (i.e. a single bit) of infor-

mation. The greater energy-efficiency unavoidably translates into novel

difficulties on how to fully exploit the minimum information content

available by means of smart estimation methods.

• security: the breakthrough of cyber-physical systems (CPSs) is trans-

forming field estimators into complex systems integrating computation

capabilities and physical processes, tightly connected by a communi-

cation infrastructure. The increased interactions between cyber and
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physical realms pose novel security issues on such systems employed in

homeland security, situation awareness, environmental and industrial

monitoring. Thus, there is a need for secure state estimation strate-

gies that account for the new vulnerabilities introduced, e.g. malicious

attacks on sensors, communication channels, and the possible presence

of malicious sources in the field of interest.

The complexity of such problems offers fundamentally new challenges that

led to the work of this dissertation, addressing the problem of dynamic field

estimation.

1.3 Organization

The rest of the thesis is organized as follows:

Chapter 2 introduces the basic concepts related to partial differential

equations modeling spatially distributed systems. Special attention is de-

voted to second-order parabolic PDEs for which the notions of initial and

boundary conditions are presented, and a prototypical example concerning

the heat equation is described. Furthermore, the weak or variational formu-

lation for different types of parabolic problems is derived.

Chapter 3 reviews the fundamental principles of the finite-element ap-

proximation of spatially distributed systems. In particular, the Galerkin

method is introduced, which approximates the weak form of a PDE in a

subspace of finite dimension. Moreover, the implementation of the finite-

element approach is presented following a standard step-by-step procedure.

This includes the domain discretization into finite elements, the selection of

the approximating subspace, and the derivation of the local (element) prop-

erties, that are subsequently assembled to model the overall spatio-temporal

behavior of the approximated system.

Chapter 4 addresses the problem of centralized and distributed dynamic

field estimation. By exploiting the finite-element approximation, it is shown

how it is possible to design a centralized finite element Kalman filter for

spatially distributed systems. Further, we illustrate how such a filter can be

extended to the distributed setting by means of the parallel Schwarz domain

decomposition method, and we analyze the numerical stability in terms of

boundedness and convergence of the discretization errors. Finally, results

on the exponential stability of the distributed finite element Kalman filter
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are provided, while a numerical example related to the estimation of a bi-

dimensional temperature field demonstrates its effectiveness.

Chapter 5 introduces the problem of dynamic field estimation in the pres-

ence of an unknown source altering the field of interest. After formulating

the source estimation problem, a finite-element approximation of the orig-

inal infinite-dimensional source diffusion model is derived. Moreover, the

notion of source identifiability, i.e. the possibility of detecting the source

and uniquely identifying its location and intensity, is analyzed in a system-

theoretic framework. Finally, a multiple-model Kalman filtering approach

to source estimation is presented, and its effectiveness is demonstrated by

means of a numerical example concerning the transport of a contaminant in

a fluid.

Chapter 6 introduces the problem of dynamic estimation of a diffusion

field from binary pointwise-in-space-and-time field measurements. First,

state estimation with binary measurements is formulated as a Maximum

A-posteriori Probability (MAP) problem. Then, a moving-horizon (MH)

approximation of MAP estimation, referred to as MH-MAP algorithm, is

presented and the properties of the resulting optimization problem are an-

alyzed. Finally, the proposed approach is formulated for the special case

of dynamic field estimation, for which simulation results are presented in a

diffusive field case-study.

Chapter 7 addresses the problem of dynamic field estimation in adversar-

ial environments for next-generation monitoring systems potentially subject

to cyber and physical attacks. The considered system and attack models are

introduced and the necessary background is provided. Next, the joint at-

tack detection and mode-state estimation problem is formulated and solved

in the Bayesian framework. A possible Gaussian-mixture implementation

of the proposed joint attack detector and mode-state estimator is described,

while the effectiveness of the novel approach is demonstrated via a simulation

example concerning a power network.

Chapter 8 summarizes the contributions of the thesis and discusses av-

enues for future research.
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Chapter 2

Spatially distributed systems

Most physical systems are intrinsically spatially distributed, and for many

of them, this distributed nature can be approximately modelled in terms of

partial differential equations (PDEs). The purpose of this chapter is to recall

the basic concepts related to partial differential equations. In particular,

the aim is to briefly survey PDEs and their classification (Section 2.1.1),

with a special focus on partial differential equations involving time (the so-

called evolution equations), characterized by a solution that evolves in time

from a given initial configuration. Second-order parabolic equations will be

introduced in Section 2.1.2 and initial-boundary value problems (IBVPs) for

this class of PDEs will be illustrated, by considering the different models of

boundary and initial conditions discussed in Section 2.1.3. A special example

of physical interest (the heat equation) will be described in Section 2.1.4.

Finally, the weak or variational formulation for such parabolic IBVPs will

be presented in Section 2.2.

2.1 Mathematical model: partial differential

equations

Spatially distributed systems are modeled as infinite-dimensional systems,

governed by partial differential equations (PDEs). A PDE is an equation

involving an unknown function, its partial derivatives, and the (multiple)

independent variables. The unknown function might represent quantities

such as temperature, electrostatic potential, value of a financial security,

7



8 Spatially distributed systems

concentration of a substance, velocity of a fluid, displacement of an elastic

material, population density of a biological species, acoustic pressure, etc.

Typically these quantities depend on many variables, and one is interested

in understanding the dependency of the unknown quantity on these vari-

ables. A partial differential equation can be usually derived from physical

laws and/or modeling assumptions that specify the relationship between the

unknown quantity and the variables on which it depends. In particular, we

will consider equations in which one independent variable represents the time

variable t ∈ R+, while the remaining variables p1, . . . , pd, d = 1, 2, 3, . . . rep-

resent spatial variables. The spatial coordinate vector is denoted by p ∈ Rd.
In this case, a PDE becomes an equation involving derivatives of the un-

known function x : Ω × R+ → R, where Ω is an open subset of Rd, taking

the following form

F(x, θ) = F
(

p, t, x,
∂x

∂t
,
∂x

∂p
,
∂2x

∂t2
,
∂2x

∂p2 , ...; θ

)
= 0, (2.1)

where θ denotes a vector of parameters on which the equation depends. The

order of a PDE is the degree of the highest order derivatives appearing in

the equation. Note that equations of order higher than fourth rarely oc-

cur, and the most important PDEs are the second-order ones. Moreover,

a PDE is said to be linear if (2.1) depends linearly on the unknown x and

on its derivatives. In the special case where the derivatives having maximal

order only appear linearly (with coefficients which may depend on lower-

order derivatives), the equation is said to be quasi-linear. It is said to be

semi-linear when it is quasi-linear and the coefficients of the maximal order

derivatives only depend on x and t, and not on the solution x. A function

x = x(p, t) is a solution of (2.1) if, substituting x and its derivatives in (2.1),

one obtains F(x, θ) = 0. Common examples of linear equations are the

Laplace equation, the Poisson equation, the heat equation, Dupire’s equa-

tion, Black-Scholes equation, the wave equation, and the transport equation.

The reaction-diffusion equation is semi-linear. Burgers’ equation is a quasi-

linear equation. The Hamilton-Jacobi equation is fully nonlinear, i.e. it

depends in a nonlinear way on the highest order derivatives. Finally, if the

equation contains no terms which are independent of the unknown function

x, the PDE is called homogeneous. Otherwise it is called inhomogeneous.

For example, the Laplace equation is homogeneous, while the Poisson equa-

tion is the inhomogeneous variation. In general, it is not possible to obtain

a solution of (2.1) in closed (explicit) form.
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2.1.1 Classification of second-order PDEs

Partial differential equations can be classified into three different categories

[29]: elliptic, parabolic, and hyperbolic equations. We restrict our attention

to the case of a linear second-order PDE with constant coefficients of the

form

A
∂2x

∂v2
1

+B
∂2x

∂v1∂v2
+ C

∂2x

∂v2
2

+D
∂x

∂v1
+ E

∂x

∂v2
+ Fx = G, (2.2)

where A,B,C,D,E, F,G ∈ R, and v1, v2 represent two of the d + 1 in-

dependent variables in (2.1), one of which being the time variable. The

classification is based on the sign of the discriminant ∆ = B2 − 4AC, i.e.

• if ∆ < 0, the equation is called elliptic,

• if ∆ = 0, the equation is called parabolic,

• if ∆ > 0, the equation is called hyperbolic.

The above classification depends exclusively on the coefficients of the high-

est derivatives, and the names assigned to each class of partial derivative

operator recall the three types of conic section in the Euclidean plane. As a

matter of fact, the quadratic algebraic equation

Av2
1 +Bv1v2 + Cv2

2 +Dv1 + Ev2 + F = G,

represents an ellipse, a parabola or a hyperbola in the Cartesian plane (v1, v2)

depending on whether the discriminant ∆ is negative, null or positive. The

three types of PDE exhibit different features. Hyperbolic equations are most

commonly associated with convection or transport, parabolic equations are

most commonly associated with diffusion and elliptic equations model sta-

tionary situations, with no evolution in time. Thus, they are most commonly

associated with steady states of either parabolic or hyperbolic problems. The

canonical examples of the three families listed above are the Laplace, heat,

and wave (or Helmholtz) equations, respectively [30].

2.1.2 Parabolic equations

Parabolic PDEs describe evolution systems where the field of interest varies

not only in space, but also in time. A prototypical example of parabolic PDE

is the diffusion model, governing, for instance, the transport of a substance
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due to the molecular motion of the surrounding medium. In this case, x

represents the concentration of a polluting material or of a solute in a liquid

or a gas. More generally, a parabolic PDE describes generic time-dependent

transport phenomena that include the effects of diffusion, advection and

reaction, according to the following linear second-order partial differential

equation [31], [32]

∂x

∂t
+ L(x) = f, x ∈ Ω, t ∈ R+, (2.3)

where Ω ⊂ Rd is the bounded domain within which the unknown field x =

x(p, t) evolves at each time instant t > 0. The exogenous term on the

right-hand side of (2.3) is a given (possibly time-space varying) real-valued

function f = f(p, t), while L is a generic linear differential elliptic operator

acting on the unknown function x. We can write the operator in divergence

form1 as

L(x) = −∇ · (Λ∇x) + v · ∇x+ g x (2.4)

where Λ = Λ(p, t) ∈ Rd×d, v = v(p, t) ∈ Rd, and g = g(p, t) ∈ R. In this

case, (2.3) is referred to as the advection-diffusion-reaction equation, which

is said to be parabolic if Λ in (2.4) is a positive definite matrix, i.e.

d∑

i,j=1

λij(p, t)wiwj > 0 ∀p ∈ Ω, ∀t > 0, ∀w ∈ Rd, w 6= 0.

The terms appearing in (2.4) admit the following physical interpretation

• the diffusion term −∇ · (Λ∇x) is due to a nonuniform spatial distri-

bution of the unknown x, where the rate of diffusion is given by the

diffusivity (matrix of diffusion coefficients) Λ;

• the advection term v · ∇x is due to a transport process proportional

to the gradient of the unknown field, where v is a velocity field;

• the reaction term g x accounts for linear growth or decay of the un-

known function.

1Let p = [ξ , η]T be the position vector in a two-dimensional coordinate system, and f

a scalar field. The gradient of f is defined as the vector ∇f = [ ∂f
∂ξ

, ∂f
∂η

]T . Furthermore,

let F = [Fξ , Fη ]T be a vector field, the divergence of F, is defined as the scalar field

∇·F =
∂Fξ
∂ξ

+
∂Fη
∂η

. Finally, the Laplacian of a scalr field is the divergence of the gradient,

i.e. 4f = ∇ · (∇f). These definitions continue to be valid also for higher dimensions.
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Hence, with L(x) given by (2.4), the general second-order parabolic PDE

(2.3) takes the form

∂x

∂t
−∇ · (Λ∇x) + v · ∇x+ g x = f, x ∈ Ω, t ∈ R+ (2.5)

which is a set of conservation laws arising from a balance of the quantity x

with the advective and conductive fluxes entering and/or leaving a control

volume. In the context of heat transfer, equation (2.5) describes the evolution

of a temperature field x under the combined effects of thermal diffusion,

advection, reaction, and external heat sources f .

2.1.3 Initial and boundary conditions

Since the same PDE may describe a wide variety of sytem dynamics, some

additional information is required to complete the problem statement. In

practical applications, the processes to be investigated take place in a con-

crete geometry (e.g., in turbines, chemical reactors, heat exchangers, car

engines etc.) during a finite interval of time. The choice of the domain and

of the time interval to be considered is dictated by the nature of the problem

at hand, by the objectives of the analytical or numerical study, and by the

available resources. Another relevant aspect is that a PDE has to be sup-

plemented by suitable initial and boundary conditions to give a well-posed

problem with a unique solution. Let Ω ⊂ Rd be a bounded domain and [0, T ]

be the time interval of interest. The initial conditions, also called Cauchy

conditions, model the spatial distribution, or profile, of the unknown field at

some initial time t0. In order to determine a unique evolution, we also need

information about the behaviour of the solution x at the domain boundary

∂Ω, and hence suitable boundary conditions must be added. There are three

broad classes of boundary conditions [29]:

• Dirichlet boundary conditions. The value of the field x is specified on

the boundary, i.e.

x(p, t) = µ(p, t) ∀p ∈ ∂Ω, ∀t ∈ [0, T ]; (2.6)

• Neumann boundary conditions. The normal derivative (flux ) of the

field ∇x · n = ∂x/∂n is imposed on the boundary, i.e.

∂x

∂n
(p, t) = γ(p, t) ∀p ∈ ∂Ω, ∀t ∈ [0, T ] (2.7)
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n being the outward pointing unit normal vector of ∂Ω, while γ is

the prescribed flux distribution, that is, in general a function of po-

sition and time. If γ > 0 an incoming flux is assigned, while γ < 0

corresponds to an outgoing flux ;

• Robin boundary conditions. The value of a linear combination of the

field and its normal derivative is specified on the boundary, i.e.

α(p, t)
∂x

∂n
(p, t) + β(p, t)x(p, t) = γ(p, t) ∀p ∈ ∂Ω, ∀t ∈ [0, T ] (2.8)

where α and β are in general space-time dependent, but usually constant.

Robin conditions are also called generalized Neumann boundary conditions.

Indeed, a Robin condition with β = 0 simplifies to a Neumann condition.

When µ = 0 and γ = 0, the boundary conditions are said to be homoge-

neous. In the case of homogeneous Dirichlet conditions this is equivalent

to specify a zero field on the boundary, or, for Neumann conditions, to as-

sume there is no flux across the boundary, i.e. the domain is insulated

from the surrounding environment (no-flux condition). Boundary conditions

are, therefore, imposed by suitably specifying the functions µ, α, β, and γ

on ∂Ω. Finally, different types of conditions can be assigned to different

portions of the boundary of the considered domain. In such a case, the as-

sociated boundary conditions are said to be mixed. The combination of a

PDE with assigned initial conditions and boundary conditions is referred to

as an initial boundary value problem (IBVP).

2.1.4 Example: the heat equation

The prototype of a parabolic PDE (2.4) with L(x) = −∇ · (λ∇x) is the so

called heat equation [31], [32]

∂x

∂t
−∇ · (λ∇x) = f, x ∈ Ω, t ∈ R+ (2.9)

which provides the basic tool for heat conduction analysis. When the ther-

mal diffusivity λ is space-independent, we can rewrite L(x) = −λ∇2x, where

∇2 = ∇·∇ denotes the Laplacian operator. The heat equation describes the

evolution in time of the temperature x(p, t) in homogeneous and isotropic

heat-conducting media occupying the region Ω. Modeling the heat conduc-

tion process requires to apply thermodynamics of energy conservation along
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with Fourier’s law of heat conduction that for a homogeneous medium takes

the form [33], [34]

q = −κA ∂x

∂p
(2.10)

Fourier’s law models the rate of heat transfer which depends on a physical

property of the medium, the thermal conductivity κ. A is the cross-sectional

area normal to direction of heat flow. The minus sign in (2.10) is a conse-

quence of the second law of thermodynamics, requiring that, whenever a tem-

perature gradient exists, heat must flow in the direction from higher to lower

temperature. Heat is transferred through a complex submicroscopic mecha-

nism in which atoms interact by elastic and inelastic collisions to propagate

the energy from regions of higher to regions of lower temperature. Thanks

to Fourier’s law, the complexities of the molecular mechanisms can be ne-

glected, and the rate of heat propagation can be directly evaluated through

(2.10). We consider the heat conduction conditions in solids and structures,

i.e. we assume the material particles of the body of interest are at rest. The

thermal diffusivity λ (m2/s), which appears on the left-hand side of (2.9), is

defined as λ = κ/ρc, ρ being the mass density (kg/m3) and c the specific

heat (J/kg ·K), both assumed constant. The physical significance of ther-

mal diffusivity is associated with the speed of propagation of heat into the

medium during changes of temperature. The higher the thermal diffusivity,

the faster is the response of a medium to thermal perturbations, and the

faster such changes propagate throughout the medium.

Heat transfer problems are classified according to the variables that influ-

ence the temperature. If the temperature is a function of time, the problem is

classified as unsteady or transient. If the temperature is independent of time,

the problem is called a steady-state problem. If the temperature is a function

of a single space coordinate, the problem is said to be one-dimensional.

Note that equation (2.9), also known as the diffusion equation, describes

a much more general model, where diffusion not only concerns heat but

also, for instance, mass transfer, i.e. the transport of a substance due to the

molecular motion of the surrounding medium. In this case, x may represent

the chemical concentration in a liquid or a gas and equation (2.10) is known

as the Fick’s law of diffusion [33].

As we have mentioned in Section 2.1.3, the governing equations in a

mathematical model have to be supplemented by additional information in

order to obtain a well posed problem, i.e. a problem that has exactly one

solution, depending continuously on the data. To determine the temperature
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distribution in a medium, it is necessary to solve the appropriate form of the

heat equation. However, such a solution depends on the physical conditions

existing at the boundaries of the medium and, since the situation is time-

dependent, on conditions existing in the medium at some initial time. The

heat equation is second-order in the spatial coordinates, hence two boundary

conditions must be expressed for each coordinate in order to describe the sys-

tem. Moreover, the equation being first-order in time, one initial condition

must be specified.

In heat transfer problems, the three types of boundary conditions intro-

duced in Section 2.1.3 can be derived by considering conservation of energy

at the surface as follows.

• The Dirichlet condition corresponds to a situation where the boundary

surface is maintained at a fixed temperature, i.e.

x = T on ∂Ω (2.11)

where T is a prescribed temperature (which in general can be a func-

tion of position and time). This condition is closely approximated, for

instance, when the surface is in contact with a melting solid or a boil-

ing liquid. In both cases, there is heat transfer at the surface, while

the surface remains at the temperature of the phase change process.

• The Neumann condition corresponds to the existence of a fixed heat

flux at the boundary surface. This heat flux is related to the temper-

ature gradient at the surface by Fourier’s law

−κ ∂x
∂n

= γ on ∂Ω (2.12)

Boundary conditions of this type may physically correspond to heaters

(e.g., thin electric strip heaters) attached to the surface. A special case

of this condition corresponds to the perfectly insulated, or adiabatic,

surface with zero heat flux for which

∂x

∂n
= 0 on ∂Ω (2.13)

• The Robin boundary condition corresponds to the existence of con-

vection heating (or cooling) at the surface and is obtained from the

Newton’s law of cooling describing the convective heat flux

qconv = ν (x− xe) (2.14)
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where xe is the so called external or reference temperature of the sur-

rounding ambient fluid (e.g., liquid or gas) and ν is the convection heat

transfer coefficient of units W/(m2 ·K). Conservation of energy at the

surface boundary takes the form

−κ ∂x
∂n

= ν (x− xe) on ∂Ω (2.15)

Positive convective heat flux is considered in the direction of the surface

normal (i.e., away from the surface).

A Robin (convection2) boundary condition is physically different than Dirich-

let (prescribed temperature) or Neumann (prescribed flux) boundary condi-

tions in that the temperature gradient within the considered body at the sur-

face is now coupled to the convective flux at the body-fluid interface. Neither

the flux nor the temperature are prescribed, but rather, a balance between

conduction and convection is forced, with the exact surface temperature and

surface heat flux determined by the combination of convection coefficient,

thermal conductivity, and ambient fluid temperature. Clearly, Dirichlet and

Neumann boundary conditions can be obtained from the Robin condition as

special cases if κ and ν are treated as coefficients. For example, by setting

ν xe = γ and then letting ν = 0 in the first term of the right-hand side, (2.15)

reduces to (2.12). From a physical point of view, Robin boundary conditions

are the most common in practice in that many actual systems are governed

by a natural energy balance between conduction and convection.

2.2 Weak formulation of parabolic problems

In this section we present the weak or variational form of initial-boundary

value problems for second-order parabolic equations, introduced in Section

2.1.2, of the form (2.5)

∂x

∂t
+ L(x) = f, x ∈ Ω, t ∈ R+ (2.16)

satisfying an initial (or Cauchy) condition

x(p, 0) = x0(p) in Ω (2.17)

2Convection is the process in which a physical property is propagated (i.e., convected)

through space by the motion of the medium occupying the space. Fluid flow is a common

example of convection [29].
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and one of the conventional boundary conditions (Dirichlet, Neumann, Robin

or mixed)

B(x) = 0 on ∂Ω (2.18)

In (2.16) Ω is a bounded domain in Rn and the linear operator is given by

(2.4), i.e.

L(x) = −λ∇2x+ v · ∇x+ g x (2.19)

where we used Λ = λI, I ∈ Rn being the identity matrix and λ > 0. The

matrix of diffusion coefficients is therefore assumed constant in time and spa-

tially uniform, so that the diffusive term can be rewritten using the Laplacian

operator as follows

−∇ · (Λ∇x) = −∇ · (λI∇x) = −λ∇ · ∇x = −λ∇2x

A function x ∈ C2(Ω) ∩ C(Ω) satisfying (2.16)-(2.18) is called a classical

solution of this problem. The space Ck(Ω) is defined to be the set of all

real-valued functions x defined on Ω with the property that x and its partial

derivatives up to order k are all continuous on Ω. The closure Ω of Ω is the

union of Ω and ∂Ω. We know from the theory of partial differential equa-

tions [32] that (2.16)-(2.18) has a unique classical solution, provided that

∂Ω, f, and the coefficients of L are sufficiently smooth. However, in many

applications one has to consider equations where these smoothness require-

ments are no longer met, and, hence, the classical theory is inappropriate. In

order to overcome these limitations and to be able to deal with PDEs with

non-smooth quantities, we generalize the notion of solution by weakening

the differentiability requirements on x. To begin with, let us suppose that

x is a classical solution of (2.16)-(2.18). Then, for any sufficiently smooth

generic weight function ψ ∈ C1
0 (Ω), C1

0 (Ω) = {ψ ∈ C1(Ω) : ψ = 0 on ∂Ω},
multiplying both sides of the PDE by ψ and integrating over Ω yields

∫

Ω

∂x

∂t
ψ dp−

∫

Ω

λ∇2xψ dp +

∫

Ω

v · ∇xψ dp +

∫

Ω

gxψ dp =

∫

Ω

fψ dp

(2.20)

In this context, ψ is referred to as a test function. The idea is to check

whether the PDE holds in the weighted average sense over Ω using the test

function ψ to define the weights in the average. Clearly, the fact that (2.20)

holds for a particular test function ψ does not mean that (2.16) holds. How-

ever, if (2.20) holds for all test functions from a sufficiently large set, then
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(2.16) must hold. Note that the integral form (2.20) still involves second

order derivatives of the unknown field. In order to obtain lower-order deriva-

tives, the next step is to apply Green’s identity to the diffusive term in the

left-hand side of (2.20):
∫

Ω

∇2xψ dp =

∫

∂Ω

∂x

∂n
ψ dp−

∫

Ω

∇x · ∇ψ dp . (2.21)

Finally, by substituting (2.21) into (2.20), we obtain the weak form of the

initial-boundary vale problem (2.16)
∫

Ω

∂x

∂t
ψ dp−

∫

∂Ω

λ
∂x

∂n
ψ dp +

∫

Ω

λ∇x · ∇ψ dp

+

∫

Ω

v · ∇xψ dp +

∫

Ω

gxψ dp =

∫

Ω

fψ dp (2.22)

which is valid for any test function ψ. Clearly if x is a classical solution

of (2.16)-(2.18), then it is also a weak solution. However, the converse is

not true. If (2.16)-(2.18) admit a weak solution, this may not be smooth

enough to be a classical solution. The original PDE (2.16) suggests the

solution should have partial derivatives up to order two, i.e. x should be

twice differentiable, and f should be continuous over Ω. Nonetheless, the

variational form (2.22) involves only the first derivatives of x, and it is only

necessary that f be integrable. This is the reason why (2.22) is referred to

as the weak form of the original IBVP which, by contrast, can be called the

strong form. Notice that the weakest possible assumptions should be made

on the functions involved, so as to include as many cases as possible. To this

end, we introduce the Sobolev spaces [35] below. First of all, it is convenient

to define the space of square-integrable functions

L2(Ω) =

{
f : Ω→ R

∣∣∣∣
∫

Ω

| f |2 dΩ <∞
}
. (2.23)

The righ-hand side of the PDE will be required to belong to L2(Ω). More-

over, if Ω ∈ R2, then the solution x of (2.22) and the test functions must

satisfy

x,
∂x

∂ξ
,
∂x

∂η
∈ L2(Ω) (2.24)

where (ξ, η) are the spatial coordinates of the position vector p ∈ Ω. The

above conditions define the Sobolev space H1(Ω):

H1(Ω) =

{
f ∈ L2(Ω)

∣∣∣∣
∂f

∂ξ
∈ L2(Ω) ,

∂f

∂η
∈ L2(Ω)

}
(2.25)



18 Spatially distributed systems

Both the solution and the test functions must also satisfy the boundary con-

ditions. In particular, for a Dirichlet condition it is convenient to introduce

H1
0 (Ω) =

{
f ∈ H1(Ω) | f = 0 on ∂Ω

}
(2.26)

which is another example of a Sobolev space. The assumptions on the func-

tions appearing in the variational form (2.22) can be stated in terms of weak

derivatives, therefore x and ψ are assumed to be only weakly differentiable.

Moreover, the weak form only requires weak derivatives of order one, whereas

in the strong form (2.16) x must have continuous derivatives up to order two.

This is certainly a substantial relaxation of the requirements on x. One of the

main advantages of extending the class of solutions of a IBVP from classical

solutions with continuous derivatives to weak solutions with weak derivatives

is that it is easier to prove the existence of weak solutions. Once established

the existence of weak solutions, one may then study their properties, such as

uniqueness and regularity, and try to prove under appropriate assumptions

that the weak solutions are, in fact, classical solutions.

It is important to note that different boundary conditions in (2.18) will

lead to different weak formulations of (2.22). In particular, since we look for

a weak solution in the space of test functions, Dirichlet conditions will be

explicitly imposed in the weak form, while Neumann and Robin conditions

will be only implicitly contained in (2.22). This is why Dirichlet conditions

are usually called essential boundary conditions, whereas Neumann/Robin

conditions are said to be natural.

In the next sections we will examine in more detail how the variational

formulation (2.22) may vary according to the different type of boundary

condition under consideration.

2.3 Dirichlet problem

2.3.1 Homogeneous case

Let us now consider the weak formulation of parabolic problems with homo-

geneous Dirichlet boundary conditions (2.6)

∂x

∂t
− λ∇2x+ v · ∇x+ gx = f in Ω

x(p, 0) = x0(p) ∀p ∈ Ω (2.27)

x = 0 on ∂Ω
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where λ > 0 and f ∈ L2(Ω). The Dirichlet conditions are essential as they

appear explicitly in the weak form, through the requirement that x ∈ H1
0 (Ω)

and hence ψ ∈ H1
0 (Ω). In this case, the integral term defined over the

boundary ∂Ω appearing in the left-hand side of (2.22) cancels out, since

from (2.26) ψ = 0 on ∂Ω. The weak form of the Dirichlet homogeneous

problem (2.27) is thus defined as follows.

Find x ∈ H1
0 (Ω) such that ∀ψ ∈ H1

0 (Ω)
∫

Ω

∂x

∂t
ψ dp+

∫

Ω

λ∇x·∇ψ dp +

∫

Ω

v·∇xψ dp+

∫

Ω

gxψ dp =

∫

Ω

fψ dp (2.28)

where f ∈ L2(Ω).

2.3.2 Inhomogeneous case

The inhomogeneous Dirichlet problem is described by the following IBVP:

∂x

∂t
− λ∇2x+ v · ∇x+ gx = f in Ω

x(p, 0) = x0(p) ∀p ∈ Ω (2.29)

x = µ on ∂Ω

where α > 0, f ∈ L2(Ω) and µ 6= 0 is a function defined on ∂Ω that

must satisfy some regularity conditions. Usually the inhomogeneous case is

converted to the homogeneous one presented in Section 2.3.1 by a suitable

change of variable. To this end, it is assumed there is a function µ̂ ∈ H1(Ω)

such that µ̂ = µ on ∂Ω. It turns out that the correct space of test functions

is still H1
0 (Ω). By defining z = x− µ̂, the inhomogeneous Dirichlet boundary

condition in (2.29) can be written as a homogeneous condition z = 0 on ∂Ω.

Thus the solution takes the form x = z+ µ̂, where µ̂ is assumed to be known

and z ∈ H1
0 (Ω) is unknown. The inhomogeneous Dirichlet IBVP (2.29) can

now be given the following variational formulation:

Find x = z + µ̂, z ∈ H1
0 (Ω) such that ∀ψ ∈ H1

0 (Ω)
∫

Ω

∂z

∂t
ψ dp +

∫

Ω

λ∇z · ∇ψ dp +

∫

Ω

v · ∇zψ dp +

∫

Ω

gzψ dp

=

∫

Ω

fψ dp−
∫

Ω

∂µ̂

∂t
ψ dp−

∫

Ω

λ∇µ̂ · ∇ψ dp

−
∫

Ω

v · ∇µ̂ψ dp−
∫

Ω

gµ̂ψ dp (2.30)
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where f ∈ L2(Ω), and µ̂ ∈ H1(Ω) is such that µ̂ = µ on ∂Ω.

In general, it may be complicated to find a suitable function µ̂ satisfying

the Dirichlet condition µ̂ = µ on ∂Ω (in an IBVP only µ is given, not µ̂).

However, in practice the weak form of a PDE is usually solved via spatial

discretization, and hence it is easier to produce via numerical methods a

function µ̂ (approximately) satisfying the inhomogeneous Dirichlet condition.

This will be clarified later, once we will consider how to approximately solve

the weak form of PDEs. Notice also that (2.30) is the same expression as

(2.28), except for the right-hand side term of the equation. Indeed, when

dealing with inhomogeneous Dirichlet conditions, the forcing term in the

weak form of the IBVP takes into account the boundary function µ through

µ̂ and its derivatives. Furthermore, observe that all the integrals appearing in

(2.30) that involve µ̂ and its derivatives can be computed, since we assumed

µ̂ ∈ H1(Ω).

2.4 Neumann problem

2.4.1 Homogeneous case

Next we derive the weak form of the homogeneous Neumann problem that

takes the form

∂x

∂t
− λ∇2x+ v · ∇x+ gx = f in Ω

x(p, 0) = x0(p) ∀p ∈ Ω (2.31)

λ
∂x

∂n
= 0 on ∂Ω

where λ > 0 and f ∈ L2(Ω). Here we deal with a natural boundary condition

of type (2.7) that will not appear explicitly in the weak form. Indeed, the

boundary integral
∫
∂Ω
λ ∂x∂nψ dp appearing on the left-hand side of (2.22)

vanishes because of the homogeneous Neumann condition λ ∂x∂n = 0 satisfied

by the solution x on the boundary. The following homogeneous Neumann

initial boundary-value problem is therefore obtained:

Find x ∈ H1(Ω) such that ∀ψ ∈ H1(Ω)

∫

Ω

∂x

∂t
ψ dp +

∫

Ω

λ∇x · ∇ψ dp +

∫

Ω

v · ∇xψ dp +

∫

Ω

gxψ dp =

∫

Ω

fψ dp,(2.32)
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where f ∈ L2(Ω).

It is worth pointing out that the variational formulation (2.32) takes the

same form of (2.28) characterizing a homogeneous Dirichlet IBVP. How-

ever, this does not mean that solving a homogeneous Neumann problem is

equivalent to finding the weak solution of a homogeneous Dirichlet problem.

Indeed, the same result is obtained for two different reasons. Specifically,

whereas in the Dirichlet case it was the boundary condition on the test func-

tion ψ that caused the boundary integral to vanish, in the Neumann case this

is due to the condition satisfied by the solution on the boundary. This, in

turn, leads to a weak solution of the Neumann problem requiring x ∈ H1(Ω),

while the weak solution of the Dirichlet problem is such that x ∈ H1
0 (Ω).

2.4.2 Inhomogeneous case

Let us now consider the inhomogeneous Neumann problem

∂x

∂t
− λ∇2x+ v · ∇x+ gx = f in Ω

x(p, 0) = x0(p) ∀p ∈ Ω (2.33)

λ
∂x

∂n
= γ on ∂Ω

where λ > 0, γ 6= 0 and f ∈ L2(Ω). The above Neumannn IBVP can be

solved in an analogous way to the homogeneous one. However, in this case

the inhomogeneous Neumann condition in (2.33) leads to a non-zero flux

across the boundary, and hence the integral term in (2.22) depending on the

normal derivative of the unknown does not vanish. The weak formulation of

the inhomogeneous Neuman problem can be stated as follows.

Find x ∈ H1(Ω) such that ∀ψ ∈ H1(Ω)
∫

Ω

∂x

∂t
ψ dp +

∫

Ω

λ∇x · ∇ψ dp +

∫

Ω

v · ∇xψ dp +

∫

Ω

gxψ dp

=

∫

Ω

fψ dp +

∫

∂Ω

γψ dp (2.34)

where f ∈ L2(Ω).

Notice that, as previously observed in the case of Dirichlet conditions,

the weak form (2.34) is the same as the one obtained for homogeneous Neu-

mann conditions, except for the forcing term on the right-hand side which
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now accounts for the non-zero condition on the boundary of the domain of

interest.

2.5 Robin problem

2.5.1 Homogeneous case

Consider the following parabolic PDE with Robin boundary conditions (2.8)

∂x

∂t
− λ∇2x+ v · ∇x+ gx = f in Ω

x(p, 0) = x0(p) ∀p ∈ Ω (2.35)

α
∂x

∂n
+ βx = 0 on ∂Ω

where α > 0, β > 0 and f ∈ L2(Ω). The Robin boundary condition is natu-

ral, therefore we can proceed as we did for the Neumann case by substituting

in (2.22) the term proportional to the flux of the field x across the bound-

ary given by the Robin condition. It is clear from (2.35) that the following

expression holds on the boundary ∂Ω:

−α∂x
∂n

= βx.

Subsequently, the homogeneous Robin problem can be written in the weak

form as follows.

Find x ∈ H1(Ω) such that ∀ψ ∈ H1(Ω)

∫

Ω

∂x

∂t
ψ dp +

∫

∂Ω

βxψ dp +

∫

Ω

α∇x · ∇ψ dp (2.36)

+

∫

Ω

v · ∇xψ dp +

∫

Ω

gxψ dp =

∫

Ω

fψ dp

where f ∈ L2(Ω).

It can be easily noticed from (2.36) that the homogeneous Robin condi-

tion brings an additional term, proportional to the unknown, on the left-hand

side of the equation. In this case, however, the forcing term on the right-hand

side is not modified.
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2.5.2 Inhomogeneous case

The Robin problem with inhomogeneous boundary conditions is described

by

∂x

∂t
− λ∇2x+ v · ∇x+ gx = f in Ω

x(p, 0) = x0(p) ∀p ∈ Ω (2.37)

α
∂x

∂n
+ βx = γ on ∂Ω

where α > 0, β > 0, γ 6= 0 and f ∈ L2(Ω). As in the previous homogeneous

case, the Robin boundary condition from (2.37) is replaced into (2.22), so as

to obtain the following weak form

Find x ∈ H1(Ω) such that ∀ψ ∈ H1(Ω)

∫

Ω

∂x

∂t
ψ dp +

∫

∂Ω

βxψ dp +

∫

Ω

α∇x · ∇ψ dp +

∫

Ω

v · ∇xψ dp (2.38)

+

∫

Ω

gxψ dp =

∫

Ω

fψ dp +

∫

∂Ω

γψ dp

where f ∈ L2(Ω).

Note that in (2.38) there is an additional forcing term on the right-hand

side, analogously to the case of inhomogeneous Neumann conditions. This

is due to the fact that Neumann and Robin conditions are of the same type,

i.e. natural conditions in the weak formulation. The Robin initial boundary-

value problem can, in fact, be considered as a generalization of the Neumann

problem in Section 2.4.

2.6 Mixed problem

Let us finally consider a partial differential equation characterized by mixed

natural/essential boundary conditions. In this case, the overall boundary

can be partitioned into two distinct paths ∂ΩD and ∂ΩR on which essential

and, respectively, natural conditions are applied, and such that ∂ΩD∪∂ΩR =
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∂Ω with ∂ΩD ∩ ∂ΩR = ∅. The mixed probem takes the following form

∂x

∂t
− λ∇2x+ v · ∇x+ gx = f in Ω

x(p, 0) = x0(p) ∀p ∈ Ω (2.39)

x = µ on ∂ΩD

α
∂x

∂n
+ βx = γ on ∂ΩR

where α > 0, β ≥ 0 and f ∈ L2(Ω). A mixed problem is addressed by subdi-

viding the intergal over the boundary into two parts: one defined over ∂ΩD
and the other over ∂ΩR. Then, we can proceed separately on each portion

of ∂Ω, by following the previously described weak formulation for Dirichlet

and Robin problems. In the resulting weak form of a mixed problem all the

terms originating in the separate cases of Dirichlet and Robin conditions will

therefore appear.



Chapter 3

Finite-element approximation of

spatially distributed systems

In this chapter we introduce the fundamental principles of the finite-element

approximation of spatially distributed systems, governed by partial differen-

tial equations (discussed in the previous chapter). For the vast majority of

problems, these PDEs cannot be solved with analytical methods. Instead, a

finite-element approximation of the equations can be constructed. We start

by presenting the Galerkin method which approximates the weak form of

a PDE in a finite-dimensional subspace. Then, the implementation of the

finite-element approach is presented following a standard step-by-step proce-

dure. This includes the domain discretization into finite elements, the choice

of the approximating subspace, and the derivation of the element equations.

Once the individual element equations are derived, they must be assembled

to characterize the overall behavior of the system.

3.1 Galerkin method

The Galerkin method produces the best approximation, from a given ap-

proximating subspace, to the true solution of a variational problem. In

particular, this approximation is the solution of a finite-dimensional system

of equations.

First of all, the infinite-dimensional problem is converted into its weak

formulation, introduced in Section 2.2 for parabolic PDEs. It can be no-

ticed that in each different type of parabolic initial-boundary value problem

25
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described in Sections 2.3, 2.4, 2.5 and 2.6, the corresponding integral form

always contains terms depending on both the unknown field and the test

functions, as well as terms exclusively depending on the latter. More specif-

ically, the weak form can be written as follows.

Find x ∈ V such that
∫

Ω

∂x

∂t
ψ dp + a(x, ψ) = F (ψ), ∀ψ ∈ V (3.1)

where V is the solution space (e.g. H1
0 (Ω) for the Dirichlet problem, H1(Ω) in

the Neumann and Robin cases), a(·, ·) is a bilinear form on V ×V associated

to operator L, and F is a linear functional on V .

It can be proved that a sufficient condition for the existence and uniqueness

of the solution to problem (3.1) is that the bilinear form a(·, ·) on a linear

space V is continuous (or bounded), i.e. [35]

∃C <∞ such that |a(ψ,w)| ≤ C‖ψ‖V ‖w‖V ∀ψ,w ∈ V (3.2)

and weakly coercive [1], that is

∃ ε ≥ 0,∃ ρ > 0 : a(ψ,ψ) + ε‖ψ‖2L2(Ω) ≥ ρ‖ψ‖2V ∀ψ ∈ V (3.3)

which yields for ε = 0 the standard definition of coercivity.

The Galerkin method is a projection method that aims at finding an

approximate solution of problem (3.1) in V , by projecting the equation onto

some suitable finite-dimensional subspace Vh ⊂ V . The higher the dimension

of the subspace, the better the approximation of the unknown x, i.e. the

dimension of Vh grows as h → 0. We denote by xh ∈ Vh the approximate

solution of x ∈ V , while Vh is a subspace depending on the discretization

parameter h so that:

• Vh ⊂ V ,

• dim Vh = n <∞ ∀h > 0, with n = n(h).

The approximation of (3.1) is called Galerkin problem, defined as follows.

Find xh ∈ Vh such that
∫

Ω

∂xh
∂t

ψh dp + a(xh, ψh) = F (ψh), ∀ψh ∈ Vh (3.4)
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with initial condition xh(0) = x0.

Such problem is also called semi-discretization of (3.1), as the temporal vari-

able has not yet been discretized. In order to carry out the projection, we

introduce the (linearly independent) basis functions {φj = φj(p), j =

1, 2, ..., n} for Vh = span{φ1, . . . , φn} where p ∈ Ω ⊂ R2. Then, the Galerkin

method seeks to find the approximate solution in the form of a linear com-

bination of the basis. We observe that it suffices that (3.4) is verified for the

basis functions in order to be satisfied by all the functions of the subspace

ψh ∈ Vh. Indeed, each test function can be written as a linear combination

of the basis. We therefore require the following n equations to be satisfied:

∫

Ω

∂xh
∂t

φj dp + a(xh, φj) = F (φj), ∀j = 1, 2, ..., n (3.5)

In this way, the infinite-dimensional problem (3.4) is transformed into prob-

lem (3.5) of finite dimension n. Expressing the approximate solution xh ∈ Vh
in terms of the basis functions φj(p), we can write [35,36]

xh(p, t) =

n∑

i=1

xi(t)φi(p) =

n∑

i=1

xi φi, (3.6)

where {xi = xi(t)}ni=1 are time-dependent unknown expansion coefficients

to be determined. By substituting (3.6) into (3.5), we obtain

∫

Ω

n∑

i=1

ẋiφiφj dp + a

(
n∑

i=1

xiφi, φj

)
= F (φj), ∀j = 1, 2, ..., n

n∑

i=1

ẋi

∫

Ω

φiφj dp +

n∑

i=1

xia(φi, φj) = F (φj), ∀j = 1, 2, ..., n

n∑

i=1

mij ẋi +

n∑

i=1

sijxi = uj , ∀j = 1, 2, ..., n (3.7)

where we denoted by ẋi the time derivative of function xi(t), and we used

the following definitions:

mij =

∫

Ω

φiφj dp, sij = a(φi, φj), uj = F (φj). (3.8)

Thus, the Galerkin problem (3.4) can be rewritten as follows.
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Find {x1, . . . , xn} ∈ Rn such that

n∑

i=1

mij ẋi +

n∑

i=1

sijxi = uj , ∀j = 1, 2, ..., n. (3.9)

Note that (3.7) is a system of linear ordinary differential equations that can

be rewritten in matrix form as

Mẋ + Sx = u (3.10)

where we defined the following vectors and matrices:

x = [x1, x2, ..., xn]T ∈ Rn, (3.11)

M = {mij}ni,j=1 ∈ Rn×n, (3.12)

S = {sij}ni,j=1 ∈ Rn×n, (3.13)

u = [u1, u2, ..., un]T ∈ Rn. (3.14)

The vector φ = [φ1, φ2, ..., φn]T ∈ Rn contains the so-called shape functions

composing the basis of subspace Vh, whereas x is the vector of unknown co-

efficients {xi}ni=1. Notice that, if φ and x are known, then we can determine

the approximation xh of the unknown field x at each point of the domain

p ∈ Ω through (3.6). The forcing term u is usually called load vector, or

source term of the equation. Matrices M and S are often referred to as the

mass and, respectively, stiffness matrix, names coming from corresponding

matrices in the context of structural problems. If the coefficients of the

PDE under consideration are constant, then the matrices M and S are time-

independent. These matrices depend on the choice of the shape functions,

which is a key point of the Galerkin method. Indeed, based on the selec-

tion of the particular approximating subspace and of the shape functions,

the Galerkin approximation leads to distinct methods, including the Finite

Element Method (FEM).

Next, we point out some properties of the mass and stiffness matrices

that are independent of the basis chosen for Vh, but exclusively depend on

the properties of the weak problem that is being approximated.

Theorem 1 (Positive definiteness of M and S, [1]). Given a coercive bilin-

ear form a(·, ·), the matrices M and S arising from the discretization of a

parabolic problem via the Galerkin method are positive definite.
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Proof: Let w ∈ Rn denote a generic vector, M ∈ Rn×n the mass matrix,

and S ∈ Rn×n the stiffness matrix with elements sij = a(φi, φj) where

{φi}ni=1 is the basis of Vh. Then, it is possible to write an approximation of

w using the function w[h] =
∑n
i=1 wiφi ∈ Vh, and thanks to the coercivity

of the bilinear form a(·, ·) one has

wTSw =

n∑

i=1

n∑

j=1

wisijwj =

n∑

i=1

n∑

j=1

wia(φi, φj)wj =

n∑

i=1

n∑

j=1

a(wiφi, wjφj) =

= a




n∑

i=1

wiφi,

n∑

j=1

wjφj


 = a(w[h], w[h]) ≥ k‖w[h]‖2 ≥ 0.

Moreover, if wTSw = 0, then ‖wh‖2 = 0, that is wh = 0 and hence w = 0.

In an analogous way, considering the mass matrix we can write

wTMw =

n∑

i=1

n∑

j=1

wimijwj =

n∑

i=1

n∑

j=1

wi

∫

Ω

φiφj dpwj =

=

∫

Ω

n∑

i=1

wiφi

n∑

j=1

wjφj dp =

∫

Ω

w2
[h] dp = ‖w[h]‖2 ≥ 0.

Finally, wTMw = 0 leads to ‖w[h]‖2 = 0, that is w[h] = 0 and thus w = 0.

Furthermore, the following property can be proved [1]:

Theorem 2. The mass matrix M is symmetric, while the stiffness matrix

S is symmetric if and only if the bilinear form a(·, ·) is symmetric.

�

For instance, in the Poisson problem with either Dirichlet or mixed bound-

ary conditions, the stiffness matrix S is symmetric and definite positive.

Conversely, other properties such as the condition number or the sparsity

structure, depend on the specifically considered basis. For instance, bases

formed by functions with small support are preferable, as all the elements

a(φi, φj) relative to basis functions having supports with empty intersections

will be null. More in general, from a computational viewpoint, the most con-

venient choices of Vh will be the ones requiring a low computational effort

for the computation of the matrix elements as well as the source term f .
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To sum up, the Galerkin method approximates the original infinite-

dimensional system (2.3) into a possibly large-scale finite-dimensional system

described by the ordinary differential equation (ODE) (3.10). In particular,

the latter is a linear time-variant continuous-time dynamical system of finite

dimension n. Starting from the semi-discrete Galerkin approximation it is

possible to obtain a fully-discrete (in space and time) system by discretizing

in time (3.10) with standard integration methods (e.g., backward or forward

Euler, zero-order-hold method, etc.)

3.2 Domain discretization

So far, the two theoretical foundations of the finite element approximation

have been presented: the weak form of an initial-boundary value problem and

the Galerkin method that provides an approximate solution to a variational

equation from a given finite-dimensional subspace.

The key practical ingredient of the finite-element approximation is the

domain discretization, which is carried out by means of a suitable tessella-

tion (or triangulation for triangles) of the computational domain, i.e. by

subdividing the domain of interest into a finite set of simple geometric enti-

ties called elements (e.g., triangles or quadrangles in 2D, tetrahedra, prisms

or hexahedra in 3D), connected together at a set of points called nodes. The

collection of all elements is the so-called mesh (or computational grid) Mh.

For simplicity, we restrict our discussion primarily to the two-dimensional

case. Moreover, we will deal only with the case of polygonal domains. For

computational domains with curved boundaries, the interested reader can

refer to [35], [37]. Note that the techniques presented for the 2D case can be

extended to three-dimensional domains.

3.2.1 Mesh of a polygonal domain

Let us consider a bounded polygonal domain Ω ∈ R2. We can partition Ω

into polygons Ei, i = 1, . . . , v, with a mesh Mh = {Ei}vi=1 such that

1. the mesh covers the overall domain, i.e.

Ω =

v⋃

i=1

Ei (3.15)

where Ω is the closure of Ω;
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144 6 Generation of 1D and 2D grids

6.2 Grid of a polygonal domain

Given a bounded polygonal domain Ω in R2, we can associate it with a grid (or parti-
tion) Th of Ω in polygons K such that

Ω =
⋃

K∈Th

K,

where Ω is the closure of Ω , and

•
◦
K ̸= /0 ∀K ∈ Th;

•
◦

K1 ∩
◦

K2= /0 for each K1,K2 ∈ Th such that K1 ̸= K2;
• if F = K1 ∩ K2 ̸= /0 with K1,K2 ∈ Th and K1 ̸= K2, then F is either a whole edge or

a vertex of the grid;
• having denoted by hK the diameter of K for each K ∈ Th , we define h = maxK∈Th hK .

We have denoted by
◦
K= K \∂K the interior of K. The grid Th is also called mesh, or

sometimes triangulation (in a broad sense) of Ω .
The constraints imposed on the grid by the first two conditions are obvious: in par-

ticular, the second one requires that given two distinct elements, their interiors do not
overlap. The third condition limits the admissible triangulations to the so-called con-
forming ones. To illustrate the concept, we represent in Fig. 6.2 a conforming (left) and
nonconforming (right) triangulation. In the remainder, we will only consider conform-
ing triangulations. However, there exist very specific finite element approximations,
not considered in the present book, which use nonconforming grids, i.e. grids that do
not satisfy the third condition. These methods are therefore more flexible, at least as far
as the choice of the computational grid is concerned. They allow, among other things,
the coupling of grids constructed from elements of different nature, for instance tri-
angles and quadrilaterals. The fourth condition links the parameter h to the maximum
diameter of the elements of Th.

For reasons linked to the interpolation error theory recalled in Chapter 4, we will
only consider regular triangulations Th, i.e. the ones for which, for each element K ∈
Th, the ratio between the diameter hK and the sphericity ρK (i.e. the diameter of the
inscribed circle) is less that a given constant. More precisely, the grids satisfy Property

Fig. 6.2. Example of conforming (left) and nonconforming (right) gridFigure 3.1: Example of conforming (left) and nonconforming (right) grid [1].

2. int(E1) ∩ int(E2) = ∅ ∀E1 6= E2 ∈ Mh, where int(E) = E \ ∂E denotes

the interior of E ;

3. if E1 ∩ E2 6= ∅ with E1 6= E2 ∈ Mh, then such intersection is either an

edge or a vertex of the mesh;

4. the size of the mesh is defined as the length of the longest edge of the

grid, i.e.

h = max
E∈Mh

hE (3.16)

where hE is the diameter of element E given by

hE = max
p1,p2∈E

√
(p1 − p2)T (p1 − p2); (3.17)

5. the following regularity condition holds

hE
ρE
≤ δ ∀E ∈ Mh (3.18)

where ρE denotes the diameter of the circle inscribed in E (called

sphericity of E), and δ > 0.

The second condition imposed on the mesh clearly requires that given two

distinct elements, their interiors do not overlap. The third condition limits

the admissible triangulations to the so-called conforming ones. Fig. 3.1

illustrates a conforming (left) and nonconforming (right) triangulation. In

the remainder, conforming triangulations will be considered. However, there

also exist finite element approximations which use nonconforming meshes

and allow, for instance, the coupling of grids constructed from elements of
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4.5 The finite element method in the multi-dimensional case 81

ΩhΩ

Fig. 4.9. Example of grid of a non-polygonal domain. The grid induces an approximation Ωh of
the domain Ω such that limh→0 meas(Ω − Ωh) = 0. This issue is not addressed in the present
text. The interested reader may consult, for instance, [Cia78] or [SF73]

the diameter of element K, we define h = maxK∈Th hK . Moreover, we will impose that
the grid satisfy the following regularity condition. Let ρK be the diameter of the circle
inscribed in the triangle K (also called sphericity of K ); a family of grids {Th,h > 0}
is said to be regular if, for a suitable δ > 0, the condition

hK

ρK
≤ δ ∀K ∈ Th (4.37)

is verified. We observe that condition (4.37) excludes immediately very deformed (i.e.
stretched) triangles, and hence the option of using anisotropic computational grids.

On the other hand, anisotropic grids are often used in the context of fluid dynam-
ics problems in the presence of boundary layers. See Remark 4.6, and especially ref-
erences [AFG+00, DV02, FMP04]. Additional details on the generation of grids on
two-dimensional domains are provided in Chapter 6.
We denote by Pr the space of polynomials of global degree less than or equal to r, for
r = 1,2, . . . . According to the general formula (4.28) we find

P1 = {p(x1,x2) = a+bx1 + cx2, with a,b,c ∈ R},
P2 = {p(x1,x2) = a+bx1 + cx2 +dx1x2 + ex2

1 + f x2
2, with a,b,c,d,e, f ∈ R},

...

Pr = {p(x1,x2) = ∑
i, j≥0,i+ j≤r

ai jxi
1x j

2, with ai j ∈ R}.

According to (4.29), the spaces Pr have dimension (r +1)(r +2)/2. For instance, it
results that dim P1 = 3, dim P2 = 6 and dim P3 = 10, hence on every element of the
grid Th the generic function vh is well defined whenever its value at 3, resp. 6, resp. 10
suitably chosen nodes, is known (see Fig. 4.10). The nodes for linear (r = 1), quadratic
(r = 2), and cubic (r = 3) polynomials on a three dimensional simplex are shown in
Fig. 4.11.

Figure 3.2: Example of triangulation of a non-polygonal domain Ω, which

requires an approximation Ωh [1].

different nature, e.g. triangles and quadrilaterals. The fourth condition links

the parameter h to the maximum diameter of the elements of the meshMh.

Finally, the fifth condition excludes very deformed or stretched elements,

and hence the option of using anisotropic meshes (usually adopted in the

context of fluid dynamics in the presence of boundary layers). Notice that,

in the case of polygonal domains, the discretized domain

Ωh = int

( v⋃

i=1

Ei
)

coincides with Ω. If Ω is not polygonal, it is necessary to approximate

portions of ∂Ω by line segments or simple curves. Here we will not discuss the

approximation of a non-polygonal domain with a finite element grid, shown

in Fig. 3.2. Hence, from now on the symbol Ω will be adopted to denote

without distinction both the domain of interest and its approximation.

3.2.2 Lagrangian finite elements

In general, a finite element can be formally defined by the triple (E ,P,Σ)

with the following properties:

• E is a polyhedron in Rd. In the one-dimensional case it is an interval,

in the two-dimensional case it is generally a triangle but it can also be

a quadrilateral; in the three-dimensional case it can be a tetrahedron,

a prism or a hexahedron;

• P is a space of ne polynomials defined on E . Functions in P are called

shape functions if they form a basis of P;
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• Σ = {ζi : P → R}nei=1 is a set of linearly independent functionals

on P, satisfying ζi(φj) = δij , δij being the Kronecker delta. Ev-

ery polynomial f(p) ∈ P is uniquely defined by the values of the

ne functionals in Σ, since they allow a unique identification of the

coefficients {xj}nej=1 of the expansion of f(p) with respect to the cho-

sen basis, i.e. f(p) =
∑ne
j=1 xjφj(p). As a matter of fact, we have

xi = ζi(f), i = 1, . . . , ne. These coefficients are called degrees of free-

dom, or nodal variables of the finite element, since they are the values

that must be assigned to uniquely define the field within the element.

In the case of Lagrangian finite elements, the chosen basis is provided by

the Lagrange polynomials and the degree of freedom xi is equal to the value

taken by the polynomial f at a point pi of E (node of the element), that is

we have xi = f(pi), i = 1, . . . , ne. In the remainder, we will exclusively refer

to the case of Lagrange finite elements. In the construction of a Lagrange

finite element, the choice of nodes is not arbitrary. Indeed, the problem of

interpolation on a given set E may be ill-posed. For this reason the following

definition [1] turns out to be useful:

Definition 1. A set Σ is said to be unisolvent on P if, given ne arbitrary

scalars xj , j = 1, . . . , ne, there exists a unique function f ∈ P such that

f(pj) = xj , j = 1, . . . , ne. (3.19)

In such case the triple (E ,P,Σ) is called Lagrangian finite element.

3.3 Selection of the approximating subspace

Originally, the Galerkin method was meant to produce accurate approximate

solutions from conveniently chosen subspaces of low dimension. However, the

key idea behind the finite-element approximation is to make the computa-

tions efficient, even in the case of a high-dimensional approximate subspace.

As it will be explained in the following section, this can be achieved by se-

lecting a special type of approximating subspace. The finite element method

is indeed the Galerkin method with a subspace of piecewise polynomial func-

tions (see Fig. 3.3). An approximating subspace consisting of piecewise

polynomial functions is convenient due to the ease of integration and differ-

entiation of the polynomials (main requirements for computing the mass and

stiffness matrices), and the fact that functions of this type lead naturally to

sparse matrices, allowing the problem to be efficiently solved.
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Fig. 4.17. Solutions computed using piecewise linear (left) and piecewise quadratic (right) finite
elements on a uniform grid with grid-size 1/8

the error ∥u − uh∥H1(Ω). However, it is more convenient to refer to (4.71) where the
upper bound is the sum of elemental contributions involving the solution seminorm
|u|Hr+1(K) on each element K and the local grid-size hK .

Indeed, in order to have an efficient grid that minimizes the number of elements nec-
essary to obtain the desired accuracy, we can equidistribute the error on each element
K ∈ Th. In particular, we would like to obtain

hr
K |u|Hr+1(K) ≃ η ∀K ∈ Th,

where η is a well-chosen constant that only depends on the desired accuracy and on
the number of elements of the grid.
A larger contribution from |u|Hr+1(K) (due to a more pronounced variability of u|K) will
need to be balanced either by a smaller local grid-size hK or by a higher polynomial
degree r. In the first case, we will talk about h-adaptivity of the grid, in the second case
of p-adaptivity (where p stands for “polynomial”). In the remainder of this chapter we
will only focus on the first technique. However, we refer to Chap. 10 for the analysis
of error estimates which are better suited for polynomial adaptivity.

The remarks made up to now, although correct, turn out to be of little use as the
solution u is not known. We can therefore proceed according to different strategies.
The first one is to use the a priori error estimate (4.71) by replacing the exact solution u
with a well-chosen approximation, easily computable on each single element. In such
case, we talk about a priori adaptivity.

A second approach is instead based on the use of an a posteriori error estimate
able to link the approximation error to the behaviour of the approximate numerical
solution uh, known after solving the problem numerically. In such case, the optimal
computational grid will be constructed through an iterative process where solution, er-
ror estimate and modification of the computational grid are recomputed until reaching
the requested accuracy. In this case, we talk about a posteriori adaptivity.

The a priori and a posteriori adaptivity strategies are not mutually exclusive, ac-
tually they can coexist. For instance, having generated an appropriate starting grid

Figure 3.3: Finite-element approximation resulting from using piecewise lin-

ear (left) and piecewise quadratic (right) elements [1].

3.3.1 Piecewise linear functions on a triangular mesh

A piecewise polynomial is a function defined by a polynomial on each element

of the mesh Mh defined over the domain Ω. In particular, let us consider a

two-dimensional problem where p = [ξ, η]T ∈ R2 is the position vector in a

Cartesian coordinate system with ξ− and η−axes. We denote the space of

polynomials with degree lower than or equal to r ∈ N as

Pr =



f(p) =

∑

i+j≤r
aijξ

iηj , aij ∈ R



 . (3.20)

Thus, the spaces of piecewise polynomials of degree 1 or 2 (linear or quadratic)

take the following form:

P1 = {f(p) = a+ bξ + cη, a, b, c ∈ R} (3.21)

P2 = {f(p) = a+ bξ + cη + dξη + eξ2 + gη2, a, b, c, d, e, g ∈ R}.

It is possible to write the dimension of such spaces (in 2D) as

dim Pr =
1

2
(r + 1)(r + 2). (3.22)

LetMh be a suitable triangulation of the domain Ω ∈ R2, then the following

family of spaces can be constructed:

Prh = {w ∈ C(Ω) : wE ∈ Pr, ∀E ∈ Mh}, r ∈ N (3.23)
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Fig. 4.10. Nodes for linear (r = 1, left), quadratic (r = 2, center) and cubic (r = 3, right) poly-
nomials on a triangle. Such sets of nodes are unisolvent

Fig. 4.11. Nodes for linear (r = 1, left), quadratic (r = 2, center) and cubic (r = 3, right) poly-
nomials on a tetrahedron (only those on visible faces are shown)

4.5.1 Finite element solution of the Poisson problem

We introduce the space of finite elements

Xr
h =

{
vh ∈ C0(Ω) : vh|K ∈ Pr ∀K ∈ Th

}
, r = 1,2, . . . (4.38)

that is the space of globally continuous functions that are polynomials of degree r on
the single triangles (elements) of the triangulation Th.
Moreover, we define ◦

Xr
h = {vh ∈ Xr

h : vh|∂Ω = 0}. (4.39)

The spaces Xr
h and

◦
X r

h are suitable for the approximation of H1(Ω), resp. H1
0(Ω), thanks

to the following property (for its proof see, e.g., [QV94]):

Property 4.2. A sufficient condition for a function v to belong to H1(Ω) is that
v ∈ C0(Ω) and v ∈ H1(K) ∀K ∈ Th.

Having set Vh =
◦
Xr

h , we can introduce the following finite element problem for the
approximation of the Poisson problem (3.1) with Dirichlet boundary condition (3.2),
in the homogeneous case (that is with g = 0)

find uh ∈ Vh :
∫

Ω

∇uh·∇vh dΩ =
∫

Ω

f vh dΩ ∀ vh ∈ Vh. (4.40)

As in the one-dimensional case, each function vh ∈ Vh is characterized, uniquely, by
the values it takes at the nodes Ni, with i = 1, . . . ,Nh, of the grid Th (excluding the

(a)
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Fig. 4.10. Nodes for linear (r = 1, left), quadratic (r = 2, center) and cubic (r = 3, right) poly-
nomials on a triangle. Such sets of nodes are unisolvent

Fig. 4.11. Nodes for linear (r = 1, left), quadratic (r = 2, center) and cubic (r = 3, right) poly-
nomials on a tetrahedron (only those on visible faces are shown)

4.5.1 Finite element solution of the Poisson problem

We introduce the space of finite elements

Xr
h =

{
vh ∈ C0(Ω) : vh|K ∈ Pr ∀K ∈ Th

}
, r = 1,2, . . . (4.38)

that is the space of globally continuous functions that are polynomials of degree r on
the single triangles (elements) of the triangulation Th.
Moreover, we define ◦

Xr
h = {vh ∈ Xr

h : vh|∂Ω = 0}. (4.39)

The spaces Xr
h and

◦
X r

h are suitable for the approximation of H1(Ω), resp. H1
0(Ω), thanks

to the following property (for its proof see, e.g., [QV94]):

Property 4.2. A sufficient condition for a function v to belong to H1(Ω) is that
v ∈ C0(Ω) and v ∈ H1(K) ∀K ∈ Th.

Having set Vh =
◦
Xr

h , we can introduce the following finite element problem for the
approximation of the Poisson problem (3.1) with Dirichlet boundary condition (3.2),
in the homogeneous case (that is with g = 0)

find uh ∈ Vh :
∫

Ω

∇uh·∇vh dΩ =
∫

Ω

f vh dΩ ∀ vh ∈ Vh. (4.40)

As in the one-dimensional case, each function vh ∈ Vh is characterized, uniquely, by
the values it takes at the nodes Ni, with i = 1, . . . ,Nh, of the grid Th (excluding the

(b)

Figure 3.4: Nodes for linear (left), quadratic (center) and cubic (right) poly-

nomials on a triangular (a) and on a tetrahedral (b) element [1].

which will be referred to as the space of finite elements, i.e. the space of

globally continuous functions that are polynomials wE of degree r on the

single element E of the mesh Mh. Moreover, we introduce

Prh0 = {w ∈ Prh : w = 0 on ∂Ω}, r ∈ N. (3.24)

Note that spaces Prh and Prh0 are all subspaces of H1(Ω) and, respectively,

H1
0 (Ω). Hence, they represent possible choices for the space Vh in the

Galerkin approximation (3.4), provided that the boundary conditions are

properly incorporated. This results from the following property (we refer

the reader to [38] for the proof).

Theorem 3. A sufficient condition for a function w to belong to H1(Ω) is

that w ∈ C(Ω) and w ∈ H1(E), ∀E ∈ Mh.

�

The fact that the functions of Prh are locally (element-wise) polynomials will

make the computation of the load vector, of the mass and of the stiffness

matrices substantially easier. Once the approximating subspace of finite

elements has been selected, a complete basis {φi}nei=1 for the space Prh has

to be chosen, where ne = dimPr. It is convenient, based on the comment in

Section 3.1, that the support of the generic basis function φi has non-empty

intersection only with the support of a negligible number of other functions

of the basis. In such way, many elements of the mass and stiffness matrices

will be null. Furthermore, it is also convenient to consider a Lagrangian

basis, i.e.

∀i = 1, 2, ..., n φi ∈ Prh : φi(qj) = δij =

{
1 i = j

0 i 6= j
(3.25)
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Figure 3.5: Basis function φj of P1
h and its support.

where qj are the nodes which in general form a superset of the vertices of

the mesh Mh. In other words, the coefficients of the expansion of a generic

function w ∈ Prh in the basis will be the values taken by w at nodes qj . To

clarify this, let us consider the simplest space P1
h of continuous piecewise

polynomials, which consists of continuous piecewise linear functions defined

on a domain discretization (triangulation) Mh of a polygonal Ω ∈ R2. A

piecewise linear function w reduces to a first-degree polynomial wE = a+bξ+

cη (3.21) on each triangular element E ∈ Mh. From (3.22) we have dimP1 =

3, so that in each element the associated basis function is completely defined

once we assign its values at the three nodes qj , j = 1, 2, 3, corresponding

to the ne = 3 vertices (nodal values of the piecewise linear function) of the

triangle (see Fig. 3.4). Thus, if Mh has n vertices, then the space P1
h is a

finite-dimensional vector space with dimension n.

The approximation accuracy can be increased by introducing more nodes

on each element and using polynomial shape functions of higher order. P2
h

is the space of piecewise quadratic polynomials with dimP2 = 6. Such

polynomials are determined once the values they take at six distinct points

of each element are fixed. In this case, the degrees of freedom of P2
h are the

values taken at the vertices and at the midpoints of each edge (see Fig. 3.4).

In practice, we usually consider linear finite elements characterized by

shape functions forming a Lagrangian basis (3.25) such that

∀i, j = 1, 2, ..., n φi ∈ P1
h : φi(pi) = 1, φi(pj) = 0, j 6= i (3.26)

where {p1,p2, ...,pn} are the so-called nodes of the mesh. In this case the

above basis is also referred to as nodal basis.

In a two-dimensional field estimation example, the unknown field x(ξ, η, t)

will be therefore approximated inside each Lagrangian linear element by a
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first-degree polynomial wE = a + b ξ + c η. The coefficients a, b, c can be

easily expressed in terms of the nodal values x1(t), x2(t), x3(t), so that the

unknown field can be rewritten as an expansion of the form (3.6)

x(ξ, η, t) =

3∑

j=1

xj(t)φj(ξ, η)

where the functions φj are the so-called basis or shape functions, defined

by (3.26). It is evident that the support of the generic shape function φj
consists of only the triangles sharing node pj . This leads to sparse mass and

stiffness matrices, whose non-zero elements correspond to the nodes of the

mesh belonging to the same triangle. In the case of linear finite elements,

once a node pj has been fixed, then the basis function φj is characterized

by a typical hat shape, as shown in Fig. 3.5. When we use, instead, contin-

uous piecewise quadratic functions defined on a triangular mesh, the shape

functions take the form illustrated in Fig. .

3.3.2 Piecewise linear functions in Galerkin method

Let us consider second-order partial differential equations of the form (2.16)

∂x

∂t
− λ∇2x+ v · ∇x+ gx = f in Ω (3.27)

The aim is to show how an approximating subspace of piecewise linear func-

tions can be constructed and used in the Galerkin method so as to provide

a finite element approximation with linear Lagrange triangles of the original

weak problem. As previously presented in Chapter 2, the weak form and

the solution subspace change with the specific boundary conditions under

consideration. In particular, in this section problems involving natural and

essential boundary conditions will be separately discussed.

First of all, we consider two-dimensional problems with Neumann or

Robin (i.e. natural) boundary conditions. It is possible to write this general

natural condition as

α
∂x

∂n
+ βx = γ (3.28)

where α > 0, β ≥ 0 and γ ∈ R. In this case, the weak problem takes the

form (2.38). In order to apply the Galerkin method, a subspace Vh of V is

needed. As described in Section 3.3.1, P1
h can be chosen as the approximat-

ing subspace. By choosing the test functions in (2.38) as Lagrangian basis
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functions and by using the expansion (3.6), the following Galerkin problem

is obtained

n∑

i=1

ẋi

∫

Ω

φiφj dp +

n∑

i=1

xi

∫

Ω

α∇φi∇φj dp +

n∑

i=1

xi

∫

∂Ω

βφiφj dp +

+

n∑

i=1

xi

∫

Ω

v · ∇φiφj dp +

n∑

i=1

xi

∫

Ω

gφiφj dp =

∫

Ω

fφj dp +

∫

∂Ω

γφj dp

∀j = 1, 2, ..., n, which can be rewritten as

n∑

i=1

mij ẋi +

n∑

i=1

(sαij + sβij + svij + sgij)xi = ufj + uγj , ∀j = 1, 2, ..., n (3.29)

where the following definitions have been used:

mij =

∫

Ω

φiφj dp sαij =

∫

Ω

α∇φi∇φj dp sβij =

∫

∂Ω

βφiφj dp

svij =

∫

Ω

v · ∇φiφj dp sgij =

∫

Ω

gφiφj dp

ufj =

∫

Ω

fφj dp uγj =

∫

∂Ω

γφj dp

(3.30)

Note that (3.29) can be written in matrix form, by definition of the following

vectors and matrices:

x = [x1, x2, ..., xn]T ∈ Rn,
M = {mij}ni,j=1 ∈ Rn×n,
Sα = {sαij}ni,j=1 ∈ Rn×n,

Sβ = {sβij}ni,j=1 ∈ Rn×n,
Sv = {svij}ni,j=1 ∈ Rn×n,
Sg = {sgij}ni,j=1 ∈ Rn×n,

uf = [uf1 , u
f
2 , ..., u

f
n]T ∈ Rn,

uγ = [uγ1 , u
γ
2 , ..., u

γ
n]T ∈ Rn.

The above leads to a linear system of ordinary differential equations of the

form

Mẋ + (Sα + Sβ + Sv + Sg)x = uf + uγ . (3.31)
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It is easy to see that defining S = Sα + Sβ + Sv + Sg and u = uf + uγ ,

then the system (3.31) reduces to (3.10). Here the stiffness matrix S and the

load vector u include additional terms arising from the natural boundary

conditions. More specifically:

• the inhomogeneous Robin condition (β > 0, γ 6= 0) generates two ad-

ditional terms Sβ 6= 0 and uγ 6= 0;

• the homogeneous Robin condition (β > 0, γ = 0) gives rise to an

additional term Sβ 6= 0 in the stiffness matrix;

• the inhomogeneous Neumann condition (β = 0, γ 6= 0) produces uγ 6=
0 in the load vector;

• the homogeneous Neumann condition (β = γ = 0) does not generate

any additional term in S and u.

Next, we consider essential boundary conditions. In the case, for in-

stance, of homogeneous Dirichlet conditions the weak form is described by

(2.6) and x ∈ H1
0 (Ω). The linear finite element approximation can be ap-

plied by subdividing the overall domain into a mesh of elements on which

the approximating subspace P1
h0 is defined. Differently from the case of nat-

ural conditions, in Dirichlet problems the field on the boundary is known,

as it is imposed by the essential boundary condition. The Galerkin prob-

lem can, therefore, be solved only for the internal nodes of the domain.

To this end, the set of nodes is divided into two subsets {1, 2, ..., N} and

{N + 1, N + 2, ..., n} of internal and, respectively, boundary nodes. Then,

the Galerkin approximation takes the form

N∑

i=1

ẋi

∫

Ω

φiφj dp +

N∑

i=1

xi

∫

Ω

α∇φi∇φj dp +

N∑

i=1

xi

∫

Ω

v · ∇φiφj dp +

+

N∑

i=1

xi

∫

Ω

gφiφj dp =

∫

Ω

fφj dp, ∀j = 1, ..., N

that can be rewritten as

N∑

i=1

mij ẋi +

N∑

i=1

(sαij + svij + sgij)xi = ufj , ∀j = 1, ..., N (3.32)
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where definitions (3.30) have been used. Next, we define

x = [x1, x2, ..., xN ]T ∈ RN ,
M = {mij}Ni,j=1 ∈ RN×N ,
Sα = {sαij}Ni,j=1 ∈ RN×N ,
Sv = {svij}Ni,j=1 ∈ RN×N ,
Sg = {sgij}Ni,j=1 ∈ RN×N ,
u = [u1, u2, ..., uN ]T ∈ RN .

and thus we can rewrite (3.32) in matrix form as follows

Mẋ + (Sα + Sv + Sg) x = u. (3.33)

If the stiffness matrix is defined as S = Sα + Sv + Sg, then (3.33) reduces

to (3.10). However, differently from the problems with natural boundary

conditions, the above system has lower dimension N < n, that is the number

of internal nodes of the mesh.

Next, we are interested in extending the linear finite element approxima-

tion to the case of inhomogeneous Dirichlet initial-boundary value problems

characterized by x = µ 6= 0 on ∂Ω. As introduced in Section 2.3.2, the

associated weak form (2.30) of the problem is an integral form in the new

unknown z ∈ H1
0 (Ω), z = x − µ̂, where µ̂ ∈ H1(Ω) is a function such that

µ̂ = µ on ∂Ω. The approximating subspace is the space of linear finite ele-

ments P1
h0. The approximate field can be written as the sum of the terms

relative to internal and, respectively, boundary nodes as follows

xh =

N∑

i=1

xiφi +

n∑

i=N+1

µiφi, (3.34)

where µi = µi(t) = µ(pi, t) for i = N + 1, ..., n, are the fixed nodal values

on the boundary, specified by the inhomogeneous Dirichlet condition. Thus,

the Galerkin approximation leads to

N∑

i=1

ẋi

∫

Ω

φiφj dp +

N∑

i=1

xi

∫

Ω

α∇φi∇φj dp +

N∑

i=1

xi

∫

Ω

v · ∇φiφj dp +

+

N∑

i=1

xi

∫

Ω

gφiφj dp =

∫

Ω

fφj dp−
n∑

i=N+1

µ̇i

∫

Ω

φiφj dp−

−
n∑

i=N+1

µi (

∫

Ω

α∇φi∇φj dp +

∫

Ω

v · ∇φiφj dp +

∫

Ω

gφiφj dp)
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which can be rewritten in the following compact form

N∑

i=1

[mij ẋi+(sαij+s
v
ij+s

g
ij)xi] = ufj −

n∑

i=N+1

[mij µ̇i+(sαij+s
v
ij+s

g
ij)µi]. (3.35)

It can be observed that on the right-hand side of (3.35) now there are terms

depending on the values of the field at boundary nodes pi, i ∈ {N + 1, N +

2, ..., n}. Compared to the homogeneous case, here the following additional

quantities are introduced:

µ = [µN+1, ..., µn]T ∈ Rn−N ,
M̂ = {mij}i,j ∈ RN×(n−N),

Ŝα = {sαij}i,j ∈ RN×(n−N),

Ŝv = {svij}i,j ∈ RN×(n−N),

Ŝg = {sgij}i,j ∈ RN×(n−N),

uf = [uf1 , u
f
2 , ..., u

f
N ]T ∈ RN .

Hence, it is possible to rewrite (3.35) in the following matrix form

Mẋ + (Sα + Sv + Sg)x = uf − [ M̂ µ̇+ (Ŝα + Ŝv + Ŝg) µ ] (3.36)

and by defining S = Sα + Sv + Sg and Ŝ = Ŝα + Ŝv + Ŝg, we obtain

Mẋ + Sx = uf − ( M̂ µ̇+ Ŝ µ). (3.37)

Hence, the inhomogeneous Dirichlet boundary conditions produce an addi-

tional term uµ = M̂ µ̇ + Ŝ µ on the right-hand side of (3.37). It it worth

pointing out that if we define u = uf−uµ, then, as in the homogeneous case,

(3.37) leads to a lower-dimensional linear system of equations with dimension

equal to the number of internal nodes N .

Finally, let us derive the approximate semi-discrete equations for initial-

boundary value problems with mixed boundary conditions, i.e. problems

with natural conditions on a portion ∂ΩR of the overall domain Ω, and

essential conditions on the remaining boundary ∂ΩD. In Section 2.6 we

described the weak formulation of mixed IBVPs which essentially consists

of dividing the integral form over Ω into two integral terms over ∂ΩR and

∂ΩD. For the finite element approximation we choose a basis in the space

P1
h0 so that the following semi-discrete system is obtained

Mẋ + (Sα + Sβ + Sv + Sg)x = uf + uγ − uµ. (3.38)
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As expected, the resulting linear differential equation (3.38) includes all the

terms accounting for the different types of mixed natural/essential boundary

conditions. In particular:

• the terms Sβ and uγ originate from the integral over ∂ΩR to which a

natural condition is applied;

• the vector uµ originates from the essential inhomogeneous condition

imposed on ∂ΩD.

Note that system (3.38) has dimension given by the sum of the number of

nodes on ∂ΩR and the number of internal nodes.

3.4 Finite-element programming

In this section we present the derivation of the element matrices and vectors

for a given approximating subspace. This is a key step for the practical

implementation of the finite element approximation of spatially distributed

systems governed by PDEs, since it will be shown how to locally (i.e. for each

element) compute the mass and the stiffness matrices as well as the load vec-

tor. Indeed, these are the necessary components for the actual programming

of the finite element approximation.

As seen in the previous section, the elements of such matrices are integral

terms either computed over the domain Ω or over the boundary ∂Ω. Due to

the fact that the triangulation of Ω entirely covers the polygonal domain, and

exploiting the additivity of the integration operation, it turns out that all

the integrals involved in the global semi-discrete system can be decomposed

into several integrals defined over each element E of the resulting meshMh.

To clarify this, let us consider for instance the mass matrix M, which can

be written as

M =

∫

Ω

φφT dp =
∑

E∈Mh

∫

E
φφT dp =

∑

E∈Mh

ME

where we defined ME =
∫
E φφ

T dp. Thus, the idea is to compute all the

local matrices ME for each element E instead of the global matrix M. In

practice, the computational complexity can be significantly reduced by using

Lagrangian finite elements which make the elements of φφT in ME nonnull

only for those nodes belonging to the same triangle E . The computation will,
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therefore, be carried out element-by-element and only for those nodes in the

same triangle. To this end, we proceed according to the following steps:

• after the discretization of Ω via the triangulation Mh, a global num-

bering scheme is established on each node {1, 2, ..., n} of the mesh;

• in each element E ∈ Mh a local (e.g., counterclockwise) numbering

{1, 2, 3} is assigned to each node of element E ;

• a map is created to associate local and global numbering.

Thus, we start by computing the local vectors and matrices for each trian-

gle. These are subsequently inserted into the global ones as elements whose

specific location is given by the corresponding global numbering. Such pro-

cedure is the so-called assembly step of the finite element method.

For a mixed problem of type (3.38), the following quantitites are locally

defined for each triangular element:

φe = [φe1 , φ
e
2 , φ

e
3]T ∈ R3,

Se = Seα + Seβ + Sev + Seg ∈ R3×3,

ue = uef + ueγ − ueµ ∈ R3,

and Me ∈ R3×3. The vector φe is formed by the shape functions of the

three nodes of the triangle, matrices Me and Se are the local mass and,

respectively, stiffness matrix, while ue represents the local load vector. Note

that, the terms Seβ , ueγ , ueµ originating from the boundary conditions appear

in the local definitions of the stiffness matrix and the load vector. Clearly,

those terms are calculated only for those elements with at least one edge on

the boundary ∂Ω. A typical finite element program consists of the following

steps:

1. Pre-processing : this step consists of setting up the problem and coding

its computational domain, which, as seen in Section 3.2.1, requires the

construction of the mesh. In general, the generation of an adequate

mesh is a numerical problem of considerable interest for which ad hoc

techniques have been developed. It is usually performed by dedicated

programs or modules of FEM solvers.

2. Local processing : the core processing is the local computation of the

mass matrix, the stiffness matrix and the load vector for each element

of the mesh.
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3. Assembly : the local quantitites are grouped together for the element-

by-element construction of the global mass, stiffness, and forcing terms.

3.4.1 Shape functions

Let E ∈ Mh be a triangular element of the mesh with vertices

p1 = [ξ1, η1]T , p2 = [ξ2, η2]T , p3 = [ξ3, η3]T . (3.39)

We assume first-order finite elements, such that the shape functions1 {φi}3i=1

take the form

φi = ai + bi ξ + ci η, ∀i = 1, 2, 3, ∀p ∈ E , ai, bi, ci ∈ R. (3.40)

We also assume a Lagrangian basis, so that the following conditions hold:

φ1(p1) = 1, φ2(p1) = 0, φ3(p1) = 0,

φ1(p2) = 0, φ2(p2) = 1, φ3(p2) = 0, (3.41)

φ1(p3) = 0, φ2(p3) = 0, φ3(p3) = 1.

Thanks to the above conditions, we can easily determine the coefficients

ai, bi, ci which allow the computation of the shape functions. For instance,

the function φ1 is obtained by solving the following linear system of equa-

tions:




φ1(p1) = 1

φ1(p2) = 0

φ1(p3) = 0





a1 + b1 ξ1 + c1 η1 = 1

a1 + b1 ξ2 + c1 η2 = 0

a1 + b1 ξ3 + c1 η3 = 0





a1 = ξ2η3−ξ3η2
2A

b1 = η2−η3
2A

c1 = ξ3−ξ2
2A

,

where A denotes the area of element E (positive for a counter-clockwise

numbering of vertices), obtained as follows

A =
1

2
det




1 ξ1 η1

1 ξ2 η2

1 ξ3 η3


 =

1

2
(ξ2η3 − ξ3η2 + ξ1η2 − ξ1η3 + ξ3η1 − ξ2η1).

In an analogous way, we can calculate the coefficients of the other shape

functions. The general expressions are

ai =
ξjηk − ξkηj

2A
bi =

ηj − ηk
2A

ci =
ξk − ξj

2A
, (3.42)

1Since we carry out an element-by-element computation of the shape functions, to

simplify the notation, from now on the local shape functions will be denoted by φ1, φ2, φ3,

i.e. the superscript “e” will be omitted. Thus, a local numbering is assumed.
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where the subscripts i, j, k = 1, 2, 3 must follow a suitable permutation, that

is (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

3.4.2 Local mass matrix

Once defined the local shape functions φ = [φ1 φ2 φ3]T obtained from (3.42),

the mass matrix can be written as

Me =

∫

E
φφT dp =

∫

E




φ2
1 φ1φ2 φ1φ3

φ2φ1 φ2
2 φ2φ3

φ3φ1 φ3φ2 φ2
3


 dp =



m11 m12 m13

m21 m22 m23

m31 m32 m33


 .

Notice that, as anticipated in Theorem 2, the mass matrix is symmetric.

In order to compute Me in 2D, we need to introduce the following exact

integration formula (see, e.g., [39] for the general expression):

Theorem 4 (Eisenberg, Malvern). Let E be a triangular element of the

mesh Mh generated over the domain Ω, and let φi and φj, i, j = 1, 2, 3, be

two local shape functions forming a Lagrangian basis in the space of linear

finite elements. Then:
∫

E
φli φ

m
j dp = 2A

l! m!

(l +m+ 2)!
∀i, j = 1, 2, 3, ∀l,m ≥ 0, (3.43)

where A denotes the area of element E.

�

The above expression can be used to obtain ∀i, j = 1, 2, 3

mii =

∫

E
φ2
i dp = 2A

2! 0!

(2 + 0 + 2)!
=

A

6

mij =

∫

E
φi φj dp = 2A

1! 1!

(1 + 1 + 2)!
=

A

12
i 6= j

so that the mass matrix takes the following form

Me =
A

12




2 1 1

1 2 1

1 1 2


 . (3.44)

It can be observed that, as anticipated in Theorem 1, Me turns out to be

definite positive.
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3.4.3 Local stiffness matrix

Suppose α, g and v uniform, i.e. constant in space. The diffusive term of

the PDE (3.27) affects the stiffness matrix through Seα, which is given by

Seα =

∫

E
α∇φT∇φ dp = α

∫

E
∇φT∇φ dp,

where the matrix ∇φ ∈ R2×3 has columns equal to the gradients of the three

local shape functions. Assuming first-order finite elements, then ∇φ turns

out to be constant. Indeed, recalling that the coefficients of the local shape

functions are given by (3.42), we obtain

∇φ = [∇φ1, ∇φ2, ∇φ3] =

[
∂φ1

∂ξ
∂φ2

∂ξ
∂φ3

∂ξ
∂φ1

∂η
∂φ2

∂η
∂φ3

∂η

]
=

[
b1 b2 b3
c1 c2 c3

]
.

and thus ∇φT∇φ can be taken out of the integral. This means that

Seα = α ∇φT∇φ
∫

E
dp = α ∇φT∇φ A

and finally

Seα = αA




b21 + c21 b1b2 + c1c2 b1b3 + c1c3
b1b2 + c1c2 b22 + c22 b2b3 + c2c3
b1b3 + c1c3 b2b3 + c2c3 b23 + c23


 . (3.45)

It can be noticed that (3.45) is a symmetric and positive definite matrix.

The reaction term in the PDE (3.27) affects the stiffness matrix through Seg,

that can be written as

Seg =

∫

E
g φφT dp = g

∫

E
φφT dp = g Me.

and thus takes the form

Seg =
gA

12




2 1 1

1 2 1

1 1 2


 . (3.46)

Note that (3.46) is also symmetric and positive definite.

Next, the aim is to compute Sev, originating from the advection term in

(2.4). We assume a uniform transport vector v = [vξ, vη]T , whose compo-

nents represent a transport process along the axes of the Cartesian coordinate



3.4 Finite-element programming 47

system. This matrix takes the following expression

Sev =

∫

E
φ vT∇φ dp =

∫

E
φ dp vT∇φ.

The integrals can be computed by substituting l = 1 and m = 0 in (3.43) so

that ∫

K

φi dp = 2A
1! 0!

(1 + 0 + 2)!
=

A

3
, ∀i = 1, 2, 3

and thus

Sev =
A
3




1

1

1


 [ vξ vη

] [ b1 b2 b3
c1 c2 c3

]
.

The local stiffness matrix accounts for the advection term of a parabolic

PDE of type (3.27) through the following matrix:

Sev =
A
3



vξb1 + vηc1 vξb2 + vηc2 vξb3 + vηc3
vξb1 + vηc1 vξb2 + vηc2 vξb3 + vηc3
vξb1 + vηc1 vξb2 + vηc2 vξb3 + vηc3


 . (3.47)

It is worth mentioning that, as discussed in Theorem 2, the stiffness matrix,

in general, is not symmetric. This is due to the fact that (3.47) is not

symmetric, and consequently if the advection term is present, then also the

total stiffness matrix will not be symmetric. However, it will be positive

definite, as proved in Theorem 1.

In the presence of Robin boundary conditions, Seβ is given by

Seβ =

∫

∂E
βφφT dp = β

∫

∂E
φφT dp = β

∫

∂E




φ2
1 φ1φ2 φ1φ3

φ2φ1 φ2
2 φ2φ3

φ3φ1 φ3φ2 φ2
3


 dp

where ∂E denotes the edge of the triangle to which the natural condition is

applied. For instance, let us assume that a Robin condition is imposed on

the edge ∂E12, i.e. the edge between nodes 1 and 2 of the element. In order

to determine Seβ , we need to compute the above line integrals. To this end,

we introduce the following parametrization of the segment corresponding to

∂E12:

p = p1 + σ(p2 − p1) =⇒
{

ξ = ξ1 + σ(ξ2 − ξ1)

η = η1 + σ(η2 − η1)
, σ ∈ [0, 1]

p′(σ) =
dp

dσ
= p2 − p1 =⇒ ‖p′(σ)‖ =

√
(p2 − p1)T (p2 − p1) , ` (3.48)
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where we denoted by ` the length of ∂E12. Since only Lagrangian finite

elements are considered, the shape function φ3 is such that φ3 = 0 along

∂E12, and thus Seβ can be determined by simply computing the integrals

involving φ1 and φ2. In particular, by exploiting the definition of line integral

and by using (3.41), the elements of Seβ can be computed as

β

∫

∂E12
φ2

1 dp

= β

∫

∂E12
(a1 + b1ξ + c1η)2 dp

= β

∫ 1

0

[a1 + b1ξ1 + σ(b1ξ2 − b1ξ1) + c1η1 + σ(c1η2 − c1η1)]2 ` dσ

= β`

∫ 1

0

[(a1 + b1ξ1 + c1η1)− σ(b1ξ1 + c1η1 − b1ξ2 − c1η2)]2 dσ

= β`

∫ 1

0

[φ1(p1)− σ(φ1(p1)− φ1(p2))]2 dσ = β`

∫ 1

0

(1− σ)2 dσ =
β`

3
;

β

∫

∂E12
φ1φ2 dp

= β

∫

∂E12
(a1 + b1ξ + c1η)(a2 + b2ξ + c2η) dp

= β

∫ 1

0

[a1 + b1ξ1 + σ(b1ξ2 − b1ξ1) + c1η1 + σ(c1η2 − c1η1)] ·

·[a2 + b2ξ1 + σ(b2ξ2 − b2ξ1) + c2η1 + σ(c2η2 − c2η1)] ` dσ

= β`

∫ 1

0

[φ1(p1)− σ(φ1(p1)− φ1(p2))][φ2(p1) + σ(φ2(p2)− φ2(p1))] dσ

= β`

∫ 1

0

(1− σ)σ dσ = β`

∫ 1

0

(σ − σ2) dσ =
β`

6
.

The remaining integrals can be computed in a similar way. To sum up, the

term in the local stiffness matrix accounting for a Robin boundary condition

takes the form

Seβ =
β`

6




2 1 0

1 1 0

0 0 0


 (3.49)

whenever the Robin condition is applied on the edge ∂E12. In the case of a
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Robin condition on ∂E23, one has

Seβ =
β`

6




0 0 0

0 2 1

0 1 2


 ; (3.50)

finally, if the Robin condition is applied on the edge ∂E13 we obtain

Seβ =
β`

6




2 0 1

0 0 0

1 0 2


 . (3.51)

Notice that, no matter what case (3.49)-(3.51) is considered, Seβ turns out to

be symmetric and positive definite. In conclusion, the local stiffness matrix

is obtained as the sum of the terms (3.45), (3.46), (3.47), and one or two

(depending on how many edges are affected by the boundary condition)

terms among (3.49)-(3.51), i.e.

Se = Seα + Seβ + Seg + Sev.

3.4.4 Local load vector

The aim is to determine the local load vector ue, arising from a second-order

PDE of the form (3.27). The following two cases will be considered: i) f

is a uniform forcing term, constant over the whole domain; ii) f is a point

function concentrated in a single point of the domain. An exogeneous source

f acts on the local load vector through uef . Let us start by considering the

uniform case i), which leads to

uef =

∫

E
fφ dp = f

∫

E
φ dp = f

∫

E



φ1

φ2

φ3


 dp (3.52)

By using the Eisenberg–Malvern formula (3.43), (3.52) becomes

uef =
fA

3




1

1

1


 (3.53)

so that the forcing term f is equally shared by the three nodes of the element.

Next, consider the case ii) with a forcing term assumed to be concentrated

in node 1 of element E . Such source can be modeled as a spatial Dirac delta,
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i.e. f = f? δ(p− p1), where f? ∈ R is the intensity of the source, assumed

uniform and constant. In this case, the load vector takes the form

uef =

∫

E
f?δ(p− p1)φ dp = f?

∫

E
δ(p− p1)φ dp

= f?φ(p1) = f?



φ1(p1)

φ2(p1)

φ3(p1)


 .

Due to the fact that we use Lagrangian linear elements, conditions (3.41)

hold, and thus the local load vector for a point source located at node 1 is

given by

uef = f?




1

0

0


 . (3.54)

In an analogous way, uef can be obtained for the other two cases of a point

source located at nodes 2 or 3 of the element.

In the case of a point source located at a generic point p0 inside element

E , the value of the intensity of the source is shared among the three nodes of

the element, based on the values that the local shape functions take at the

source location p0. This results in

uef = f?



φ1(p0)

φ2(p0)

φ3(p0)


 . (3.55)

Moreover, an inhomogeneous Robin or Neumann boundary condition origi-

nates an additional term of the form

ueγ =

∫

∂E
γφ dp = γ

∫

∂E
φ dp = γ

∫

∂E



φ1

φ2

φ3


 dp (3.56)

where γ is assumed uniform. We can exploit the parametrization (3.48) in

order to compute the line integrals. Following the same rationale used for
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Seβ , we obtain

γ

∫

∂E12
φ1 dp

= γ

∫

∂E12
(a1 + b1ξ + c1η) dp

= γ

∫ 1

0

[a1 + b1ξ1 + σ(b1ξ2 − b1ξ1) + c1η1 + σ(c1η2 − c1η1)]` dσ

= γ`

∫ 1

0

[(a1 + b1ξ1 + c1η1)− σ(b1ξ1 + c1η1 − b1ξ2 − c1η2)] dσ

= γ`

∫ 1

0

[φ1(p1)− σ(φ1(p1)− φ1(p2))] dσ = γ`

∫ 1

0

(1− σ) dσ =
γ`

2
.

γ

∫

∂E12
φ2 dp

= γ

∫

∂E12
(a2 + b2ξ + c2η) dp

= γ

∫ 1

0

[a2 + b2ξ1 + σ(b2ξ2 − b2ξ1) + c2η1 + σ(c2η2 − c2η1)]` dσ

= γ`

∫ 1

0

[(a2 + b2ξ1 + c2η1) + σ(b2ξ2 + c2η2 − b2ξ1 − c2η1)] dσ

= γ`

∫ 1

0

[φ2(p1) + σ(φ2(p2)− φ2(p1))] dσ = γ`

∫ 1

0

σ dσ =
γ`

2
.

Thus, if the natural boundary condition is applied on ∂E12, one has

ueγ =
γ`

2




1

1

0


 . (3.57)

Analogously, for the case of a natural boundary condition applied on ∂E23

ueγ =
γ`

2




0

1

1


 , (3.58)

while, if is on ∂E13, we obtain

ueγ =
γ`

2




1

0

1


 . (3.59)
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Finally, as discussed in Section 3.3.2, the presence of inhomogeneous Dirichlet

conditions generates an additional term in the load vector on the right-hand

side of (3.37) of the form

ueµ = M̂
e
µ̇e + Ŝ

e
µe (3.60)

where µe represents the vector of Dirichlet values imposed on the boundary

nodes. Matrices M̂
e

and Ŝ
e

take into account the interaction between nodes

under essential boundary conditions and the remaining (unassigned) nodes.

It is useful to recall that in the case of Dirichlet conditions, the semi-discrete

system (3.37) has dimension given by the number N of nodes on which

the essential condition is not applied. Based on N , µe takes two possible

forms: i) if the essential condition is applied on an edge of a triangle that

coincides with, e.g., ∂E23, then we have N = 1 and thus ueµ ∈ R, with

µe = [µ2, µ3]T = [µ(p2, t), µ(p3, t)]
T ∈ R2. In this case M̂

e
, Ŝ

e ∈ R1×2 and

ueµ =
[
m12 m13

]
µ̇e +

[
s12 s13

]
µe = m12µ̇2 +m13µ̇3 + s12µ2 + s13µ3.

In addition, if the Dirichlet condition x = µ(p, t) is assumed uniform and

constant along the whole boundary ∂E23, then µ2 = µ3 = µ, and hence

µ̇2 = µ̇3 = 0. Finally, we can rewrite

ueµ = αµA (b1b2 + b1b3 + c1c2 + c1c3);

ii) If, instead, there is only a single node of element E on ∂E23, for instance

node 3, then µ3 ∈ R, ueµ ∈ R2, and M̂
e
, Ŝ

e ∈ R2×1. In this case one has

ueµ =

[
m13

m23

]
µ̇3 +

[
s13

s23

]
µ3 =

[
m13µ̇3 + s13µ3

m23µ̇3 + s23µ3

]
.

Assuming a uniform and constant Dirichlet condition x = µ(p, t) along the

whole boundary, then we can write

ueµ = αµA

[
b1b3 + c1c3
b2b3 + c2c3

]
.

To conclude, the local load vector ue is given by the superposition of uef
chosen among (3.53)-(3.55) and ueγ (3.57)-(3.59). Then the effect of (3.60)

must be subtracted, so as to obtain

ue = uef + ueγ − ueµ.
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3.4.5 Assembly of the global matrices

Assembling global matrices starting from the local ones is straightforward

for first-order elements. All that is required is a look-up table connecting

local and global numbering schemes [36]. For higher order elements that

procedure remains unchanged apart from the increased number of nodes of

each element. Besides local matrices, boundary conditions also contribute

to the assembly of the global matrices. As seen in Section 2.2, Dirichlet-

type boundary conditions must be explicitly enforced. Neumann boundary

conditions, on the other hand, constitute natural boundary conditions and

need not be explicitly enforced.

As already noted, global matrices are sparse, hence it is advisable to seek

storage methods that are able to minimize memory requirements. Two main

methods are suitable to achieve memory savings: sparse matrix storage and

banded matrix storage methods. The former approach can be used regardless

of the global node numbering adopted and it is particularly convenient when

the percentage of nonzero elements is really low. The latter requires the

usage of a smart global numbering to effectively reduce the global matrix

bandwidth.

It is important to note that the number of nonzero entries in a row i of a

global FE matrix is equal to the number of nodes directly connected to node

i, that is, the number of the nodes belonging to the elements which share

node i. Hence, the global FE matrix has a sparse structure reflecting the

fact that a local approximation is used for the exact unknown function. This

is one of the most attractive features of FE approximation since it allows a

significant reduction of memory storage requirements as well as CPU time

reduction.

3.5 Time discretization

The above finite-element approximation leads to a finite-dimensional

continuous-time linear system (3.10). In order to obtain a discrete-time

system, several time discretization schemes are available. For instance, the

standard θ−method can be adopted by discretizing the time derivative with

a simple difference quotient and replacing the other terms with a linear

combination of the values at time k and time k + 1 depending on the real
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parameter θ, 0 ≤ θ ≤ 1, i.e.

M
xk+1 − xk

∆
+ S(θxk+1 + (1− θ)xk) = θuk+1 + (1− θ)uk, (3.61)

where ∆ = tk+1 − tk, k = 0, 1, . . . denotes the discretization step, assumed

to be constant. Then, the following methods can be obtained [1]:

• θ = 0 leads to the forward (explicit) Euler method

M
xk+1 − xk

∆
+ Sxk = uk (3.62)

Using the above approximation it is possible to obtain the following

discrete-time system

xk+1 = Axk + Buk (3.63)

with A = I + ∆M−1S, B = M−1∆, uk
4
= u(k∆), xk

4
= x(k∆) =

col{xj(k∆)}nj=1.

• θ = 1 leads to the backward (implicit) Euler method

M
xk+1 − xk

∆
+ Sxk+1 = uk+1 (3.64)

Using (3.64) we obtain the discrete-time system (3.63) with A =(
I + ∆M−1S

)−1
, B = AM−1∆, uk

4
= u((k + 1)∆), xk

4
= x(k∆) =

col{xj(k∆)}nj=1. Notice that A is well defined for any ∆ > 0 since

both M and S are positive definite (Theorem 1).

• θ = 1/2 leads to the Crank-Nicolson (trapezoidal) method

M
xk+1 − xk

∆
+

1

2
S(xk+1 + xk) =

1

2
(uk+1 + uk) . (3.65)

which is accurate of second order with respect to ∆, while for θ = 0

and θ = 1 we obtain first-order methods.

In conclusion, by performing one of the above time-discretization methods

on the semi-discrete descriptor system (3.10), a discrete-time explicit system

of the form (3.63) can be obtained. The latter state-space model will be used

in the next chapters for the design of suitable field estimators.



Chapter 4

Centralized and distributed

design of field estimators

4.1 Introduction

The recent breakthrough of wireless sensor network technology has made

possible to cost-effectively monitor spatially distributed systems via deploy-

ment of multiple sensors over the area of interest. This clearly paves the

way for several important practical monitoring applications concerning, e.g.,

weather forecasting [2], water flow regulation [11], fire detection, diffusion of

pollutants [3], smart grids [9], vehicular traffic [10]. The problem of fusing

data from different sensors can be accomplished either in a centralized way,

i.e. when there is a single fusion center collecting data from all sensors and

taking care of the overall spatial domain of interest, or in distributed (decen-

tralized) fashion with multiple intercommunicating fusion centers (nodes)

each of which can only access part of the sensor data and take care of a

sub-region of the overall domain. The decentralized approach is preferable

in terms of scalability of computation with the problem size and will be,

therefore, undertaken.

Since spatially distributed processes are usually modeled as infinite–

dimensional systems, governed by partial differential equations (see Chapter

2), distributed state estimation for such systems turns out to be a key issue

to be addressed. While a lot of work has dealt with distributed filters for

finite-dimensional, both linear [40–43] and nonlinear [44], systems as well as

for multitarget tracking [45], considerably less attention has been devoted to

55
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the more difficult case of distributed-parameter systems.

Recent work [14–19] has addressed the design of distributed state estima-

tors/observers for large-scale systems formed by the sparse interconnection of

many subsystems (compartments). Such systems are possibly (but not nec-

essarily) originated from spatial discretization of PDEs. In particular, [14]

presents a fully scalable distributed Kalman filter based on a suitable spa-

tial decomposition of a complex large-scale system as well as on appropriate

observation fusion techniques among the local Kalman filters. In [15], non-

scalable consensus-based multi-agent estimators are proposed wherein each

agent aims to estimate the state of the whole large-scale system. In [16], a

moving-horizon partition-based approach is followed in order to estimate the

state of a large-scale interconnected system and decentralization is achieved

via suitable approximations of covariances. Further, [17] deals with dynamic

field estimation by wireless sensor networks with special emphasis on sensor

scheduling for trading off communication/energy efficiency versus estimation

performance. In [18], a single-time scale distributed estimator of dynamic

random fields is proposed, where the sensing time scale coincide with the con-

sensus time scale. Finally, in [19] the design of distributed continuous-time

observers for partitioned linear systems is addressed.

As for the specific case of distributed-parameter systems, interesting con-

tributions have been provided in [27, 28] which present consensus filters

wherein each node of the network aims to estimate the system state on

the whole spatial domain of interest.

As compared to [27,28], here a different strategy will be adopted in which

each node is only responsible for estimating the state over a sub-domain of

the overall domain. This setup allows for a solution which is scalable with

respect to the spatial domain (i.e., the computational complexity in each

node does not depend on the size of the whole spatial domain but only of its

region of competence). In this context, the contributions of this chapter are

summarized as follows:

• We develop scalable distributed filters for distributed-parameter sys-

tems by suitably adapting the so-called Schwarz decomposition meth-

ods [46–51], which allow to split the overall domain into smaller subdo-

mains and assign each of them to different interconnected processing

nodes.

• We exploit the finite element (FE) method [35, 36, 52] in order to ap-

proximate the original infinite-dimensional filtering problem into a,
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possibly large-scale, finite-dimensional one. Combining these two in-

gredients, we propose a novel distributed finite element Kalman filter

which generalizes to the more challenging distributed case previous

work on FE Kalman filtering [53,54].

• We show that the parallel FE-based implementation of the Schwarz

method on the overall system is equivalent to performing a novel time-

discretization scheme on the interconnected subsystems. Furthermore,

we verify the well-posedness of the proposed discretization method in

terms of numerical stability (i.e., in terms of boundedness and conver-

gence of the time-discretization errors).

• We provide results on the stability of the proposed distributed FE

Kalman filter. Last but not least, a practical procedure, which requires

the tuning of only one (or few) scalar parameters, is provided to check

and guarantee the stability property.

Preliminary ideas on the topic can be found in [55]. Further, all the results

of this chapter are reported in [56].

The rest of the chapter is structured as follows. Section 4.2 introduces

the basic notation and problem formulation. Then Section 4.3 presents the

centralized FE Kalman filter for distributed-parameter systems. Section 4.4

shows how to extend such a filter to the distributed setting by means of the

parallel Schwarz method and analyzes the numerical stability in terms of

boundedness and convergence of the discretization errors. Then, Section 4.5

provides results on the exponential stability of the proposed distributed FE

Kalman filter while Section 4.6 demonstrates its effectiveness via numerical

examples related to the estimation of a bi-dimensional temperature field. Fi-

nally, Section 4.7 ends the chapter with concluding remarks and perspectives

for future work.

4.2 Problem formulation

This chapter addresses the estimation of a scalar, time-and-space-dependent,

field from given discrete, in both time and space, measurements related to

such a field provided by multiple sensors placed within the domain of interest.

Let Ω be a bounded domain of a d-dimensional Euclidean space Rd with

boundary ∂Ω, where d ∈ {1, 2, 3}. The spatial coordinate vector is denoted
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by p ∈ Ω. The scalar field to be estimated x (p, t) is defined over the space-

time domain Ω×R+, as the solution of a partial differential equation (PDE)

of the form (2.3)
∂x

∂t
+ L(x) = f (4.1)

with (possibly unknown) initial condition x (p, 0) = x0(p), p ∈ Ω, and

homogeneous boundary conditions (see Section 2.1.3)

B(x) = 0 on ∂Ω . (4.2)

The dynamic field is observed by a network of sensors i ∈ S 4= {1, . . . , S}
placed at the spatial locations si ∈ Ω, which provide the measurements

yq,i = hi (x (si, tq)) + vq,i (4.3)

collected at discrete sampling instants tq, q ∈ Z+ = {1, 2, . . . }, such that 0 <

t1 < t2 < · · · . In (4.1)-(4.3): f (p, t) is a forcing term possibly affected by

process noise; hi(·) is the measurement function of sensor i; vq,1, . . . , vq,S are

mutually independent white measurement noise sequences, also independent

from the initial state x0(p) = x (p, 0) for any p ∈ Ω.

The aim is to design a decentralized Kalman filter for spatially distributed

systems, i.e. to solve in a fully distributed fashion the infinite-dimensional

filtering problem of estimating the state x(p, t) of system (4.1)-(4.2) given

the locally gathered measurements (4.3). The proposed solution relies on

(i) the FE method [35]- [36] for the approximation of the above problem

into a finite-dimensional one, and (ii) a domain decomposition method for

the subdivision of the system into interconnected subsystems with possibly

overlapping states. The idea is to decompose the original problem on the

whole domain of interest into estimation subproblems concerning smaller

subdomains, and then assign such subproblems to different nodes which can

locally process and exchange data in order to estimate their own state. This

ensures scalability of the distributed filter for monitoring the target field.

To this end, let us consider the set of nodes N = {1, . . . , N}, subdivide

the domain Ω into possibly overlapping subdomains Ωm, m ∈ N , such that

Ω =
⋃
m∈N Ωm. Further, let ymq

4
= col {yq,i : si ∈ Ωm} denote the vector

of local measurements available to node m at time tq. Then, the task of

each node m is to estimate the field x over the corresponding subdomain

Ωm exploiting only the local measurements ymq and the information coming

from the nodes associated to the neighboring subdomains.
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Throughout the chapter, we make the following assumptions.

A1. L(·) and B(·) are linear operators over a suitable Hilbert space V , with

L(·) self-adjoint.

A2. Under the boundary conditions (4.2), the quadratic form

∫

Ω

L(x)x dp

is bounded and coercive (i.e., positive definite).

A third and last assumption A3 on the properties of the local measurement

function and local observability will be introduced in Section 4.5 (to which

we refer for a formal definition of local observability and for a discussion of

its implications).

An example of the above general problem is the estimation of the temper-

ature field x over the spatial domain of interest given point measurements

of temperature sensors. In this case, V is usually taken as the Sobolev

space H1(Ω), the measurement function is simply h(x) = x, while the PDE

(4.1) reduces to the well known heat equation (2.9) introduced in Section

2.1.4, with L(x) = −∇ · (λ∇(x)), B(x) = α∂x/∂n + βx and α(p)β(p) ≥ 0,

α(p) + β(p) > 0, ∀p ∈ ∂Ω. Here λ(p) is the thermal diffusivity, · stands

for scalar product, ∇ 4= ∂/∂p denotes the gradient operator, n is the out-

ward pointing unit normal vector of the boundary ∂Ω, and ∂x/∂n = ∇x ·n.

Clearly, when the thermal diffusivity is space-independent, one has L(x) =

−λ∇2(x), where ∇2 = ∇ · ∇ is the Laplacian operator.

Notice that considering homogeneous boundary conditions as in (4.2)

is not restrictive, since the inhomogeneous case B(x) = g on ∂Ω can be

subsumed into the homogeneous one by means of the change of variables

z = x − µ̂, where µ̂ is any function belonging to V and satisfying the inho-

mogeneous boundary conditions (see Section 2.3.2 for a detailed description

of the inhomogeneous case).

4.3 Centralized finite-element Kalman filter

In this section, it is shown how to approximate the continuous-time infinite-

dimensional system (4.1) into a discrete-time finite-dimensional linear dy-

namical system within the FE framework, and how, thanks to this space-
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time discretization, a centralized filter for field estimation can be directly

designed.

By subdividing the domain Ω into a suitable set of non overlapping re-

gions, or elements, and by defining a suitable set of basis functions φj(p) ∈
V (j = 1, . . . , n) on them, it is possible to write the approximation (3.6) of

the unknown function x(p, t) as

x(p, t) ≈
n∑

j=1

φj(p)xj(t) = φT (p) x(t) (4.4)

where: xj(t) is the unknown expansion coefficient of function x(p, t) rela-

tive to time t and basis function φj(p); φ(p)
4
= col{φj(p)}nj=1 and x(t)

4
=

col{xj(t)}nj=1.

As introduced in Chapter 3, the choices of the basis functions φj and of

the elements are key points of the FE method. Typically, the elements define

a FE mesh with vertices pj ∈ Ω, j = 1, . . . , n. Then each basis function φj is

a piece-wise polynomial which vanishes outside the FEs around pj and such

that φj(pi) = δij , δij denoting the Kronecker delta.

In order to apply the Galerkin method presented in Section 3.1, let the

PDE (4.1) be recast in the following weak form

∫

Ω

∂x

∂t
ψ dp +

∫

Ω

L(x)ψ dp =

∫

Ω

f ψdp (4.5)

where ψ(p) is a generic space-dependent weight function. Then, by choosing

the test function ψ(p) equal to the selected basis functions φj and exploiting

the approximation (4.4) in (4.5), we get

∫

Ω

∂x

∂t
φj dp +

∫

Ω

L(x)φj dp =

∫

Ω

f φjdp j = 1, . . . , n.

Stacking (one on top of the other) the above scalar equations into a single

vector equation, yields

∫

Ω

φ
∂

∂t

(
φTx

)
dp +

∫

Ω

φL
(
φTx

)
dp =

∫

Ω

φf dp

from which, defining L(φ)
4
= col {L(φj)}nj=1 and thanks to the linearity of
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operator L(·), the usual FE weak form (3.10) is obtained

[∫

Ω

φ(p)φT (p)dp

]

︸ ︷︷ ︸
M

ẋ(t) +

[∫

Ω

φ(p) [L (φ(p))]
T
dp

]

︸ ︷︷ ︸
S

x(t)

=

∫

Ω

φ(p)f(p, t)dp

︸ ︷︷ ︸
u(t)

.

(4.6)

It is evident how in (4.6) the mass matrix M and the stiffness matrix S,

defined in Section 3.1, depend only on basis functions and can be computed a

priori. The third integral depends on the forcing term f , which is assumed to

be known, and can hence be computed a priori, leading to a time dependent

load vector u(t).

It is worth pointing out that, in the FE weak form (4.6), the boundary

conditions (4.2) can be essential or natural (see Section 2.2). In both cases,

the resulting linear differential equation takes the matrix form (3.10)

M ẋ + S x = u + ε (4.7)

where ε arises from the approximation error1 in the finite-dimensional rep-

resentation (4.4) of x in terms of basis functions. Notice that from Theorem

1 M turns out to be positive definite by linear independence of the basis

functions φj(·), while S is positive definite as well thanks to the coercivity of

the quadratic form in the left-hand side of (4.5) of assumption A2. Hence the

system (4.7) turns out to be asymptotically stable, the state transition ma-

trix −M−1S being well defined and strictly Hurwitz thanks to the positive

definitess of M and S. System (4.7) can be discretized in time by different

methods, as discussed in Section 3.5, to provide the discrete-time state-space

model

xk+1 = Axk + Buk + wk (4.8)

where the process noise wk has been introduced to account for the various

uncertainties and/or imprecisions (e.g. FE approximation, time discretiza-

tion, and imprecise knowledge of boundary conditions). Specifically, the

backward Euler method described in Section 3.5 (here adopted for stability

1If x is sufficiently smooth, then the FE approximation error is point-wise bounded

and converges to zero as the size of the FE mesh tends to zero.
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issues) leads to a marching in time FE implementation [52] which yields (4.8)

with

A =
(
I + ∆M−1S

)−1

B = AM−1∆

uk
4
= u((k + 1)∆)

xk
4
= x(k∆) = col{xj(k∆)}nj=1

where ∆ denotes the time integration interval. As previously noticed in

Section 3.5, A is well defined for any ∆ > 0 since M is positive definite. It

is worth pointing out that, in the presented formulation, the descriptor (or

implicit) system (4.7) has been transformed into the standard state-space

system (4.8) characterized by full matrices A and B defined above. This

means that the inherent property of sparsity, distinguishing matrices M and

S in the original descriptor system, is unavoidably lost. In order to preserve

sparsity and exploit the associated advantages in terms of computational

efficiency, suitable linear state estimators for descriptor systems could be

designed starting from model (4.7).

In the following, for the sake of notational simplicity, it will be assumed

that each sampling instant is a multiple of ∆, i.e., tq = Tq∆ with Tq ∈
Z+, and we let T = {T1, T2, . . .}; irregular sampling could, however, be

easily dealt with. This amounts to assuming that the numerical integration

rate of the PDE (4.1) in the filter can be higher than the measurement

collection rate, which can be useful in order to reduce numerical errors. In a

centralized setting where all sensor measurements are available to the filter,

the measurement equation (4.3) takes the discrete-time form

yk = h (xk) + vk (4.9)

for any k = Tq ∈ T , where

yk
4
= col {yq,i}i∈S

h (x)
4
= col

{
hi
(
φT (si)x

)}
i∈S

vk
4
= col {vq,i}i∈S

In particular, in the case wherein all sensors directly measure the target field

x, i.e. hi(x) = x for all i ∈ S, the measurement equation (4.9) turns out to
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be linear with h(x) = Cx, where

C = col
{
φT (si)

}
i∈S (4.10)

Summarizing, the original infinite-dimensional continuous-time problem has

been reduced to a much simpler finite-dimensional (possibly large-scale) dis-

crete time filtering problem (a linear one provided that all sensor measure-

ment functions are linear) to which the Kalman filter, or extended Kalman

filter when sensor nonlinearities are considered, can be readily applied. The

resulting centralized filter recursion becomes:

x̂k|k =

{
x̂k|k−1 + Lk

(
yk − h

(
x̂k|k−1

))
if k ∈ T

x̂k|k−1 otherwise

Pk|k =

{
Pk|k−1 − LkC

T
kPk|k−1 if k ∈ T

Pk|k−1 otherwise

x̂k+1|k = Ax̂k|k + Buk

Pk+1|k = APk|kA
T + Qk (4.11)

where

Ck =
∂h

∂x

(
x̂k|k−1

)

Lk = Pk|k−1Ck

(
Rk + CkPk|k−1C

T
k

)−1
(4.12)

for k ∈ T . The recursion is initialized from suitable x̂1|0 and P1|0 = PT
1|0 >

0. In (4.11), Qk and Rk denote the covariance matrices of the process noise

wk and, respectively, measurement noise vk.

The following two remarks concerning optimality of the Kalman filter

and, respectively, handling of sensor nonlinearities are in order.

Remark 1. Notice that the process noise wk in (4.8) arises from the su-

perposition of several uncertainties and/or perturbations (including, e.g., the

FE approximation of the continuous field) so that its whiteness and uncor-

relation with the initial state, usually assumed in a stochastic framework, do

not hold true in practice. As a result, the Kalman filter algorithm (4.11)-

(4.12), even in the linear case h(x) = Cx, looses its Bayes optimality but

still preserves deterministic least-squares optimality as the minimizer of the
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following cost function

J =
(
x1 − x̂1|0

)T
P−1

1|0
(
x1 − x̂1|0

)
+

k−1∑

i=1

(xi+1 −Axi)
T

Q−1
i (xi+1 −Axi) +

k∑

i=1

(yi −Cxi)
T

R−1
i (yi −Cxi)

Remark 2. Sensor nonlinearities, provided that the measurement functions

hi(·) in (4.3) are invertible, can be handled by applying the inverse measure-

ment functions h−1
i (·) to the sensor outputs, i.e. by defining transformed

sensor outputs y′q,i = h−1
i (yq,i) and considering the transformed linear mea-

surement equations

y′q,i = x (si, tq) + v′q,i (4.13)

in place of (4.3). This approach has the advantage of eliminating any need

for a nonlinear filter. However, while (4.13) is exact in the ideal, noise-

less, case i.e. when vq,i = v′q,i = 0, it becomes only an approximation in

presence of measurement noise. In particular, even if vq,i in (4.3) can be

reasonably assumed to be zero-mean, white and uncorrelated with the state

x (si, tq), non-negligible biases and/or correlations can be induced by the non-

linear transformation h−1
i (·) in the noise term v′q,i appearing in (4.13). For

this reason, depending on the particular measurement function under consid-

eration, the use of truly nonlinear filters can be useful also when the sensor

nonlinearity is invertible. For non-invertible sensor nonlinearities, nonlin-

ear filters such as, for instance, the extended Kalman filter for sufficiently

smooth hi(·) or the unscented Kalman filter for arbitrary hi(·), must be used.

4.4 Distributed finite-element Kalman filter

In order to develop a scalable distributed filter for monitoring the target

field, the idea is to run in each node m ∈ N a field estimator for the region

Ωm exploiting local measurements ymq , information from the nodes assigned

to neighboring subdomains, as well as the PDE model (4.1) properly dis-

cretized in time and space. The proposed approach takes inspiration from

the parallel Schwarz method [46], [50], originally conceived for an iterative

solution of boundary value problems. Subsequently, the Schwarz method

has received renewed interest [47, 48] in connection with the parallelization
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of PDE solvers. In loose terms, the idea of the parallel Schwarz method is

to decompose the original PDE problem on the overall domain of interest

into subproblems concerning smaller subdomains, and then to solve in par-

allel such subproblems via iterations in which previous solutions concerning

neighboring subdomains are used as boundary conditions. As shown below,

such an idea turns out to be especially useful for the distributed filtering

problem considered in this work.

Let us define, for any m ∈ N , a partition {Γmj}j∈Nm of ∂Ωm (the bound-

ary of Ωm) such that

Γmm = ∂Ω ∩ ∂Ωm

∂Ωm =
⋃

j∈Nm
Γmj

Γmj ⊂ Ωj , ∀j 6= m

Γmj ∩ Γmh = ∅, ∀j 6= h

(4.14)

In this way, each piece Γmj of ∂Ωm for any j ∈ Nm\{m} is uniquely assigned

to node j. Notice that in the above definitions, for each nodem, Nm indicates

the in-neighborhood of node m, where j is called an in-neighbor of node m

whenever Γmj 6= ∅ (by definition, Nm includes the node m). This clearly

originates a directed network (graph) G = (N ,L) with node set N and link

set L
4
= {(j,m) ∈ N ×N : Γmj 6= ∅}.

Figure 4.1: Definition of interfaces Γmj in two different configurations with

three overlapping subdomains.

In order to describe the filtering cycle to be implemented in node m

within the sampling interval [tq, tq+1), let us assume that at time t−q , before

the acquisition of ymq , such a node is provided with a prior estimate x̂mq|q−1
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as the result of the previous filtering cycles. Let δ be the time interval neces-

sary for performing a distributed prediction step consisting of an information

exchange between neighbors and a local field prediction over a subdomain.

Then, Lq
4
= (tq+1 − tq) /δ represents the number of distributed prediction

steps (equal to the number of allowed data exchanges) in the q-th sampling

interval. Note that, for the sake of notational simplicity, hereafter it is sup-

posed that tq+1 − tq is an integer multiple of δ, i.e., Lq ∈ Z+. Anyway, the

method could easily encompass the general case. Then, the above mentioned

filtering cycle for the proposed distributed estimation algorithm essentially

consists of:

1. Correction, i.e. incorporation (assimilation) of the last measurement

ymq into the current estimate;

2. Distributed prediction, i.e. alternate exchanges of estimates with

the neighborhood Nm and predictions over the time sub-intervals [tq +

(`− 1)δ, tq + `δ] for ` = 1, . . . , Lq, i.e. Lq times.

The proposed Parallel Schwarz filter is detailed in Table 4.1.

Some remarks concerning the algorithm reported in Table 4.1 are in or-

der. As it can be seen from step 5, the information received by neighbor-

ing nodes is taken into account by explicitly imposing the inhomogeneous

Dirichlet interface conditions (4.16) on Γmj , j ∈ Nm \ {m}. Clearly, a de-

lay is introduced in those terms concerning neighboring nodes which makes

the algorithm well-suited for distributed computation. With this respect, it

is worth pointing out that the proposed algorithm is based on the parallel

Schwarz method for evolution problems, which, as well known, enjoys nice

convergence properties to the centralized solution as the time discretization

step δ tends to zero [47]- [48]. Hence, it seems a sensible and promising

approach to spread the information through the network.

4.4.1 Finite-element implementation

In practice, the algorithm, and in particular the solution of the boundary

value problem (4.15)-(4.17), has to be implemented via a finite dimensional

approximation. In particular, we follow the same approach described in

Section 4.3 for the centralized case by constructing a FE mesh for the global

domain Ω, and then decomposing such a grid into N possibly overlapping
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Table 4.1: Algorithm 1: Parallel Schwarz filter

1: Given ymq , update the prior estimate x̂mq|q−1 into x̂mq|q.
2: Initialize the prediction with x̂mq,0 = x̂mq|q and x̂mq,−1 = x̂mq|q.
3:

4: for ` = 1, . . . , Lq do

5: Exchange data with the neighborhood; specifically send to neighbor

j the data x̂mq,`−1 concerning the sub-boundary Γjm ⊂ ∂Ωj , and get

from neighbor j the data x̂jq,`−1 concerning the sub-boundary Γmj ⊂
∂Ωm.

6: Solve the problem

x̂mq,` − x̂mq,`−1

δ
+ L

(
x̂mq,`

)
= fq,` in Ωm (4.15)

subject to the Dirichlet boundary conditions

x̂mq,` = x̂jq,`−1 on Γmj ∀j ∈ Nm\{m} (4.16)

and the linear boundary conditions

B(x̂mq,`) = 0 on Γmm . (4.17)

where fq,`(p)
4
= f (p, tq + `δ).

7: end for

8:

9: Set x̂mq+1|q = x̂mq,Lq for the next cycle.

sub-meshes, according to the domain decomposition. For the sequel, it is

important to distinguish vertices lying on the boundary between neighbors

(interface) from the other vertices of the subdomain. To this end, let int(S)

denote the interior of a generic set S. Then, we introduce the sets of indices

Im
4
= {i : pi ∈ int(Ωm) ∪ Γmm} and Imj

4
= {i : pi ∈ Γmj} of the basis

functions corresponding to internal and, respectively, interface vertices of

subdomain Ωm. In particular, let xm
4
= col{xi : i ∈ Im}, m = 1, . . . , N ,

denote the vector of field values in vertices belonging to int(Ωm)∪ Γmm, i.e.

the internal state of subsystem m. Then, it is possible to extract from (4.7)
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the rows relative to states xm so that

Mmm ẋm +
∑

j∈Nm\{m}
Mmjẋj + Smmxm

+
∑

j∈Nm\{m}
Smjxj = um + εm (4.18)

where the matrices Mmj and Smj take into account the contribution of

state variables in vertices pj ∈ Γmj , and εm accounts for the approximation

error in the finite-dimensional representation (4.4) of x in terms of basis

functions. Notice that both Mmm and Smm are positive definite due to

positive definiteness of M and S. As a result, the ODE (4.7) can be written

as the interconnection of N subsystems of the form (4.18).

Each of the subsystems (4.18) can be discretized in time in the interval

[tq, tq+1] using a modified backward Euler technique wherein a delay is in-

troduced in the terms concerning neighboring nodes, so that at time tq + `δ

we obtain the following discrete-time linear descriptor system

Mmm

(
xmq,`+1 − xmq,`

δ

)
+ Smmxmq,`+1

+
∑

j∈Nm\{m}

[
Mmj

(
xjq,` − xjq,`−1

δ

)
+ Smjxjq,`

]

= umq,`+1 + εmq,`+1 + τmq,` (4.19)

where xmq,`
4
= xm(tq + `δ), for ` = 1 . . . , Lq, and τmq,` denotes the time dis-

cretization error at time tq + `δ. The recursion (4.19) is initialized at time

tq by setting

xmq,0 = xm(tq),

xjq,0 = xj(tq), xjq,−1 = xj(tq), j ∈ Nm \ {m}
(4.20)

The well-posedness of the discretization scheme resulting from (4.19)-(4.20)

will be analyzed in Section 4.4.2.

It can be readily seen that such a hybrid Euler time-discretization imple-

ments the Parallel Schwarz method described earlier. In fact, it is equivalent

to approximate x in Ωm at time tq + `δ as

x(p, tq + `δ) ≈
∑

i∈Im
φmi (p)xm,iq,` +

∑

j∈Nm\{m}

∑

i∈Imj
φji (p)xj,iq,`−1 (4.21)
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which, in turn, corresponds to explicitly imposing inhomogeneous Dirichlet

interface conditions on Γmj , j ∈ Nm \ {m} taken from neighboring nodes

(like in (4.16)).

Thanks to the positive definiteness of Mmm and Smm, each discretized

model (4.19) can be easily transformed into a state-space model of the form

xmq,` = Amxmq,`−1 +
∑

j∈Nm\{m}
Amjx̂jq,`−1 (4.22)

+
∑

j∈Nm\{m}
Āmjxjq,`−2 + Bmumq,` + wm

q,`

where
Am = (Mmm + δSmm)

−1
Mmm

Amj = (Mmm + δSmm)
−1 (−δSmj −Mmj

)

Āmj = (Mmm + δSmm)
−1

Mmj

Bm = (Mmm + δSmm)
−1
δ

and wm
q,` = (Mmm + δ Smm)−1δ

(
ε̃mq,`+1 + τmq,`

)
is the error combining the

effects of both spatial and temporal discretizations.

Such interconnected models can be exploited so as to derive a FE approx-

imation of the distributed-state estimation algorithm with Parallel Schwarz

method (Algorithm 1 in Table 4.1). In particular, the numerical solution of

(4.15)-(4.17) takes the form of the local one-step-ahead predictor for model

(4.22) at time tq + (`− 1)δ, whereas the correction step of the local filtering

cycle is the usual (extended) Kalman filter update step for the local sub-

system. The resulting distributed finite-element (extended) Kalman filter is

reported in Table 4.2.

As previously shown, the additional terms
∑
j∈Nm\{m}Amjx̂jq,`−1 and∑

j∈Nm\{m} Āmjx̂jq,`−2 in equation (4.22) arise from the non-homogeneous

Dirichlet boundary conditions (4.16). In this respect, it is worth noting that

the matrices Amj and Āmj are sparse since only the components of the

neighbor estimates x̂jq,`−1 and x̂jq,`−2 concerning the sub-boundary Γmj are

involved. The positive real γ > 1 is a covariance boosting factor whose role,

as will be discussed in the stability analysis of the distributed FE-KF, is

that of guaranteeing convergence of the estimates. The covariance boosting

factor is also necessary in order to compensate for the additional uncer-

tainty associated with the boundary conditions at the interfaces, i.e., for
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Table 4.2: Algorithm 2: Distributed finite-element Kalman filter

1: Given ymq , update the prior estimate x̂mq|q−1 and covariance Pm
q|q−1 into

x̂mq|q and Pm
q|q as follows

x̂mq|q = x̂mq|q−1 + Lmq

(
ymq − hm

(
x̂mq|q−1

))

Pm
q|q = Pm

q|q−1 − Lmq (Cm
q )TPm

q|q−1

Cm
q =

∂hm

∂x

(
x̂mq|q−1

)

Lmq = Pm
q|q−1C

m
q

(
Rm
q + Cm

q Pm
q|q−1(Cm

q )T
)−1

where hm
4
= col {hi : si ∈ Ωm} denote the local measurement function

at node m.

2: Initialize the distributed prediction with x̂mq,0 = x̂mq|q, Pm
q,0 = Pm

q|q and

x̂mq,−1 = x̂mq|q, Pm
q,−1 = Pm

q|q.
3:

4: for ` = 1, . . . , Lq do

5: Exchange data with the neighborhood; specifically send to neighbor

j the estimates x̂mq,`−1concerning the sub-boundary Γjm ⊂ ∂Ωj , and

get from neighbor j the estimates x̂jq,`−1concerning the sub-boundary

Γmj ⊂ ∂Ωm.
6: set

x̂mq,` = Amx̂mq,`−1 +
∑

j∈Nm\{m}
Amjx̂jq,`−1

+
∑

j∈Nm\{m}
Āmjx̂jq,`−2 + Bmumq,` (4.23)

Pm
q,` = γ2 AmPm

q,`−1 (Am)
T

+ Qm (4.24)

with γ > 1.
7: end for

8:

9: Set x̂mq+1|q = x̂mq,Lq and Pm
q+1|q = Pm

q,Lq
for the next cycle.
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the uncertainty associated with the estimates
∑
j∈Nm\{m}Amjx̂jq,`−1 and∑

j∈Nm\{m} Āmjx̂jq,`−2 . In fact, such an uncertainty is not explicitly ac-

counted for in (4.24) due to the fact that the correlation between the esti-

mates of neighboring nodes is not precisely known. The interested reader

is referred to [16] for additional insights on this issue in the context of dis-

tributed estimation of large-scale interconnected systems. As in the cen-

tralized context, the positive definite matrix Qm accounts for the various

uncertainties and imprecisions (i.e., discretization errors, imprecise knowl-

edge of the exogenous input f and of the boundary conditions (4.17)).

4.4.2 Numerical stability

As previously shown, in the FE-based implementation the Parallel Schwarz

step amounts to performing a hybrid Euler discretization on the intercon-

nection of the N subsystems (4.18). Hence, as a preliminary analysis step,

it is important to verify the well-posedness of such a modified discretization

method in terms of numerical stability (i.e., in terms of boundedness and

convergence of the time-discretization errors). To this end, it is convenient

to consider the global dynamics of the interconnection.

Let us consider the augmented global state x̃
4
= col{xm, m = 1, . . . , N},

which clearly may contain repeated components of the state due to the pos-

sibly overlapping nature of the decomposition. Let the vectors ũ and ε̃ be

defined in a similar way. In terms of x̃, the interconnection of the N subsys-

tems of the form (4.18) gives rise to a global augmented system which obeys

the following continuous-time linear dynamics

M̃ ˙̃x + S̃ x̃ = ũ + ε̃ (4.25)

Note that the only difference between (4.7) and (4.25) is the presence of

duplicated states in the latter linear ODE. Nevertheless, the two systems

originate an identical state evolution. According to the divide-and-conquer

strategy, matrices M̃ and S̃ can be decomposed as

M̃ = M̃D + M̃F (4.26)

S̃ = S̃D + S̃F (4.27)

with M̃D = block-diag(M11, . . . ,MNN ), S̃D = block-diag(S11, . . . ,SNN ),

whereas M̃F and S̃F take into account the FE interconnection structure
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among neighboring subsystems. By substituting (4.26)-(4.27) into (4.25),

one obtains

M̃D
˙̃x + S̃D x̃ + M̃F

˙̃x + S̃F x̃ = ũ + ε̃ . (4.28)

Then, by applying the hybrid Euler time discretization (4.19), the time-

discretized augmented system takes the form

M̃D

(
x̃q,`+1 − x̃q,`

δ

)
+ S̃Dx̃q,`+1 + M̃F

(
x̃q,` − x̃q,`−1

δ

)

+ S̃F x̃q,` = ũq,`+1 + ε̃q,`+1 + τq,` (4.29)

for ` = 0, . . . , Lq − 1, where x̃q,`
4
= x̃(tq + `δ) and, as previously, τq,` denotes

the time-discretization error at time tq+`δ. Further, the initialization (4.20)

can be simply rewritten as

x̃q,0 = x̃q,−1 = x̃(tq) (4.30)

The following result can now be stated which summarizes the numerical

stability properties2 of (4.29)-(4.30).

Theorem 5. The hybrid Euler time-discretization scheme (4.29)-(4.30) is

consistent with local truncation error of order 1. Further, it is zero-stable

provided that the following condition holds

ρ(M̃−1
D M̃F ) < 1 (4.31)

where ρ(·) denotes the spectral radius.

Proof: Let D denote the differential operator in the left-hand side of

(4.28), i.e.,

D(ξ, t) = M̃D ξ̇(t) + S̃D ξ(t) + M̃F ξ̇(t) + S̃F ξ(t)

for any smooth time-function ξ. Further, let Dδ denote the discrete-time

operator in the left-hand side of (4.29), i.e.,

Dδ(ξ, t) = M̃D

(
ξ(t+ δ)− ξ(t)

δ

)
+ S̃D ξ(t+ δ)

+ M̃F

(
ξ(t)− ξ(t− δ)

δ

)
+ S̃F ξ(t) .

2The interested reader is referred to chapter 12 of [57] for an introduction on the

concepts of consistency, zero-stability, and convergence of time-discretization methods.
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As well known, the time-discretization scheme (4.29) is consistent when, for

any smooth time-function ξ and for any time t, Dδ(ξ, t) converges to D(ξ, t)

as δ goes to 0. By taking the Taylor expansion of ξ in t, we can write ξ(t+

δ) = ξ(t)+δ ξ̇(t)+δ2 ξ̈(t)+O(δ3) and ξ(t−δ) = ξ(t)−δ ξ̇(t)+δ2 ξ̈(t)+O(δ3).

Hence, after some algebra, we have

Dδ(ξ, t) = D(ξ, t) + M̃D δ ξ̈(t) + S̃D δ ξ̇(t)− M̃F δ ξ̈(t)

+O(δ2)

which shows that the scheme is consistent and the local truncation error has

order 1.

In order to study zero-stability, we start by considering the limit for δ

going to zero of the time-difference equation (4.29), which is given by

M̃D (x̃q,`+1 − x̃q,`) + M̃F (x̃q,` − x̃q,`−1) = 0 . (4.32)

In fact, zero-stability of the time-discretization scheme (4.29) corresponds to

the neutral stability of the discrete-time system (4.32) (recall that system

(4.32) is neutrally stable when its trajectories remain bounded as ` goes to

infinity for any initial condition). Then the proof can be concluded by noting

that, by defining ζq,`+1 = x̃q,`+1 − x̃q,`, system (4.32) can be rewritten as

[
x̃q,`+1

ζq,`+1

]
=

[
I −M̃−1

D M̃F

0 −M̃−1
D M̃F

] [
x̃q,`
ζq,`

]

which is neutrally stable if and only if condition (4.31) holds.

Recall that, in view of the Dahlquist’s Equivalence Theorem, zero-stability

is necessary and sufficient for convergence of a consistent time-discretization

scheme [57]. Hence, under condition (4.31), the hybrid Euler time-discretization

scheme (4.19) turns out to be convergent. For instance, this means that

in each interval [tq, tq+1] the predicted estimates obtained via the Paral-

lel Schwarz step (4.23) converge to the solution of a centralized prediction

equation of the form

M̃ ˙̂x + S̃ x̂ = ũ

as the time-discretization step δ goes to 0, or equivalently as the number Lq
of distributed prediction steps goes to infinity.

Remark 3. It is worth noting that (4.31) translates into a block diagonal

dominance condition for the global system, which requires that the effect of
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the isolated subsystems on the state evolution prevails over the effect origi-

nated from the interconnections among subsystems. Taking into account the

particular structure of the FE mass matrix M, which is reflected in the sparse

structure of M̃, the numerical stability condition (4.31) is usually satisfied in

practice (see, for instance, the simulation example of Section VI). In addi-

tion, in the unlikely case in which condition (4.31) does not hold, it is possible

to modify the hybrid Euler time-discretization scheme (4.29) (and hence the

implementation of the Parallel Schwarz step) so as to retrieve zero-stability.

Specifically, by introducing a suitable scalar ω ∈ (0, 1], one can replace (4.29)

with

M̃D

(
x̃q,`+1 − (2− ω) x̃q,` + (1− ω) x̃q,`−1

ω δ

)

+ S̃Dx̃q,`+1 + M̃F

(
x̃q,` − x̃q,`−1

δ

)
+ S̃F x̃q,`

= ũq,`+1 + ε̃q,`+1 + τq,` (4.33)

which is still well-suited for distributed implementation. Notice that such a

modified scheme coincides with (4.29) for ω = 1. Further, along the lines of

Theorem 1, it is possible to show that (4.33) is consistent for any value of

ω ∈ (0, 1], and zero-stable provided that

ρ(ω M̃−1
D M̃F − (1− ω) I) < 1 . (4.34)

In turn, since

ρ(ω M̃−1
D M̃F − (1− ω) I) ≤ max{ω ρ(M̃−1

D M̃F ), 1− ω}

for any ω ∈ (0, 1], condition (4.34) can be always satisfied for suitably small

values of ω even when condition (4.31) does not hold. The price to be paid for

the improved numerical stability is a slow-down of the information spread.

4.5 Stability analysis

In this section, the stability of the estimation error dynamics resulting from

application of the distributed finite-element Kalman filter of Algorithm 2

(Table 4.2) is analyzed by supposing the measurement equation in each do-

main to be linear (as it happens when the sensors directly measure the target

field like in (4.10)). Further, in order to simplify the notation, the interval
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tq+1 − tq between consecutive measurements is supposed to be constant, so

that in each sampling interval [tq, tq+1) a fixed number L of distributed pre-

diction steps is performed. In this respect, we make the following assumption.

A3. For eachm ∈ N , the local measurement function is linear, i.e., hm(xm) =

Cmxm. Further, local observability holds in the sense that the pair

((Am)L,Cm) is observable for any m ∈ N .

A set of sensors ensuring local observability in each domain ensures also

global observability (i.e., observability of the global state vector given all the

measurements). However, the converse need not hold in that local observabil-

ity requires a sufficient number of sensors to be present in each subdomain.

Nevertheless, under global observability, the local observability condition

can be satisfied by choosing each subdomain large enough so that a suffi-

cient number of sensors is included inside. Recalling that the matrices Am

arise from space-time discretization of a PDE, some comments on how the

local observability assumption A3 maps to the original continuous field are

important. In this respect, while the relationship between observability of a

continuous field and of its space-time discretization is far from trivial [58,59],

the following considerations can be made: i) from the practical point of view,

unless the domain Ω has a very specific form, the exact observability of the

original PDE solution cannot be directly checked, and one invariably needs

to resort to some numerical approximation scheme [58] like the one consid-

ered here; ii) on the other hand, it has been proved that, for a convergent

discrete approximation scheme, the observability of the discrete numerical

model is sufficient (and necessary) for the stability of the related field esti-

mation process (see [58] for a formal statement of this property); iii) finally,

it has been recently shown [59] that quantitative observability measures, de-

fined in terms of suitable observability Gramians, carry over in a consistent

way from the original PDE to its space-time discretization for any convergent

numerical approximation scheme.
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Let us first rewrite (4.29) into the state-space form

x̃q,`+1 =
(
M̃D + δS̃D

)−1

M̃D

︸ ︷︷ ︸
ÃD

x̃q,` +
(
M̃D + δS̃D

)−1 (
−δS̃F − M̃F

)

︸ ︷︷ ︸
ÃF

x̃q,`

+
(
M̃D + δS̃D

)−1

M̃F

︸ ︷︷ ︸
ĀF

x̃q,`−1 +
(
M̃D + δS̃D

)−1

δ
︸ ︷︷ ︸

B̃

ũq,`+1 + w̃q,` (4.35)

where, clearly, ÃD = block− diag(A1, . . . ,AN ) is the block diagonal matrix

of state transition matrices, representing the N isolated subsystems.

Recalling that, in each interval [tq, tq+1), the recursion (4.35) is initialized

with the initial conditions (4.30), it can be easily noticed that at the last

distributed prediction step ` = L one obtains

x̃q,L = ÃL
D x̃q,0 + ÃF,Lx̃q,0 + B̃LŨq + D̃LW̃q (4.36)

where Ũq
4
= col{uq,`, ` = 1, . . . , L}, W̃q

4
= col{wq,`, ` = 1, . . . , L} and B̃L,

D̃L, ÃF,L are suitable matrices with the latter defining the interconnection

couplings between subsystems. Noting that, by definition, x̃q,L = x̃q+1,0 =

x̃(Tq+1∆), the latter equation can be rewritten as

x̃q+1 = ÃL
D x̃q + ÃF,Lx̃q + B̃LŨq + D̃LW̃q (4.37)

where x̃q
4
= x̃(Tq∆).

Similarly, application of step 3 of Algorithm 2 yields, at the last dis-

tributed prediction step ` = L,

x̂q,L = ÃL
D x̂q,0 + ÃF,Lx̂q,0 + B̃LŨq . (4.38)

where x̂q,`
4
= col{x̂mq,`, m ∈ N}. Further, by defining x̂q|q

4
= col{x̂mq|q, m ∈

N} and x̂q|q−1
4
= col{x̂mq|q−1, m ∈ N}, the global correction step of Algo-

rithm 2 at time tq+1 can be written as

x̂q+1|q+1 = x̂q+1|q + L̃q+1(ỹq+1 − C̃ x̂q+1|q) (4.39)

where ỹq+1
4
= col{ymq+1, m ∈ N}, L̃q+1 = block− diag(L1

q+1, . . . ,L
N
q+1), and

C̃
4
= col{Cm, m ∈ N}.
Recalling that x̂q,L = x̂q+1|q and x̂q,0 = x̂q|q, equations (4.38) and (4.39)

can be easily combined so as to write x̂q+1|q+1 as a function of x̂q|q and thus
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obtain a recursive expression for the global estimate. In addition, noting

that the global output vector can be written as ỹq+1 = C̃x̃q+1 + ṽq+1 with

ṽq+1
4
= col{vmq+1, m ∈ N}, we can also write a recursive expression for

the dynamics of the global estimation error ẽq
4
= col{x̃q − x̂q|q, m ∈ N}.

Specifically, standard calculations yield

ẽq+1 =
(
I− L̃q+1C̃

)(
ÃL
D + ÃF,L

)
ẽq + ν̃q (4.40)

where the term ν̃q = (I− L̃q+1C̃)D̃LW̃q + ṽq+1 accounts for the time-space

discretization errors, for the measurement noise, and for all the other possible

uncertainties.

As for the time evolution of the global covariance matrix

P̃q|q
4
= block− diag(P1

q|q, . . . ,P
N
q|q),

with similar reasoning as above it is an easy matter to see that application

of Algorithm 2 leads to the following recursion

P̃q+1|q+1 =
(
I− L̃q+1C̃

T
)

P̃q+1|q
(
I− L̃q+1C̃

T
) [
γ2LÃL

DP̃q|q(Ã
L
D)T + Φ̃

]

(4.41)

where Φ̃
4
=
∑L−1
i=0 γ2iÃi

DQ̃(Ãi
D)T and Q̃

4
= block− diag(Q1, . . . ,QN ). The

following stability result can now be stated.

Theorem 6. Let assumptions A1-A3 hold and let the matrices Q̃ and R̃
4
=

block− diag(R1, . . . ,RN ) be positive definite. Then, the global covariance

matrix asymptotically converges to the unique positive solution P̃(γ) of the

algebraic Riccati equation

[P̃(γ)]−1 =
[
γ2LÃL

DP̃(γ)(ÃL
D)T + Φ̃

]−1

+ C̃T R̃−1 C̃ ,

and the global Kalman gain converges to the steady-state value

L̃(γ) =
[
γ2LÃL

DP̃(γ)(ÃL
D)T + Φ̃

]
C̃T

×
{

C̃
[
γ2LÃL

DP̃(γ)(ÃL
D)T + Φ̃

]
C̃T + R̃

}−1

. (4.42)
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Then, the dynamics (4.40) of the estimation error is exponentially stable if

and only if

ρ
{[

I− L̃(γ)C̃
] (

ÃL
D + ÃF,L

)}
< 1 . (4.43)

Proof: Notice first that assumption A2 implies observability of the pair

(ÃL
D, C̃) which, as it can be easily verified through the PBH test, also implies

observability of (γLÃL
D, C̃) for any real γ > 0. Then, the convergence of

P̃q|q to P̃(γ) > 0 follows from well known results on discrete-time Kalman

filtering, since (4.41) is the standard Kalman filter covariance recursion for

a linear system with state matrix γLÃL
D and output matrix C̃.

Further, it is immediate to see that the gain L̃(γ) defined in (4.42) is the

steady-state global Kalman gain associated with the steady-state covariance

P̃(γ). Notice finally that the matrix
(
I− L̃q+1C̃

)(
ÃL
D + ÃF,L

)
, which de-

termines the dynamics of the estimation error, exponentially converges to[
I− L̃(γ)C̃

] (
ÃL
D + ÃF,L

)
, so that the estimation error dynamics is expo-

nentially stable if and only if
[
I− L̃(γ)C̃

] (
ÃL
D + ÃF,L

)
is Schur stable, i.e.,

if and only if condition (4.43) is satisfied.

In practice, the design of the proposed distributed finite-element Kalman

filter requires the tuning of the scalar parameter γ. Specifically, for any

given value of γ the stability of the filter can be readily checked by means

of condition (4.43). Then, the tuning of γ can be performed numerically by

finding, among the values of γ satisfying the stability condition (4.43), the

one yielding the best estimation accuracy (see Fig. 4.9 in Section 4.6 for an

illustration of these ideas in a specific case study).

In order to understand the role played by the scalar γ in the satisfiability of

condition (4.43) the following result is helpful.

Proposition 1. A sufficient condition for (4.43) to hold is that the scalar

γ satisfies the relationship

γL >

∥∥∥∥I +
(
ÃL
D

)−1

ÃF,L

∥∥∥∥
P̃(γ)

, (4.44)

where ‖ · ‖M denotes the matrix norm induced by the vector norm ‖x‖M 4
=√

xTMx.
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Proof: With standard manipulations, it can be seen that L̃(γ) and P̃(γ)

satisfy the relationship

P̃(γ) = [I− L̃(γ)C̃T ]
[
γ2LÃL

DP̃(γ)(ÃL
D)T + Φ̃

]

× [I− L̃(γ)C̃T ]T + L̃(γ)R̃[L̃(γ)]T

so that

[I− L̃(γ)C̃T ]
[
γ2LÃL

DP̃(γ)(ÃL
D)T

]
[I− L̃(γ)C̃T ]T ≤ P̃(γ)

and, hence, ∥∥∥[I− L̃(γ)C̃T ]ÃL
D

∥∥∥
P̃(γ)

≤ 1/γL . (4.45)

Hence, in order to complete the proof, it is sufficient to observe that

∥∥∥
[
I− L̃(γ)C̃

] (
ÃL
D + ÃF,L

)∥∥∥
P̃(γ)

≤
∥∥∥∥
[
I− L̃(γ)C̃

]
ÃL
D

∥∥∥∥
P̃(γ)

∥∥∥∥I +
(
ÃL
D

)−1

ÃF,L

∥∥∥∥
P̃(γ)

≤
∥∥∥∥I +

(
ÃL
D

)−1

ÃF,L

∥∥∥∥
P̃(γ)

/γL

where the latter inequality follows from (4.45). In fact, this implies

∥∥∥
[
I− L̃(γ)C̃

] (
ÃL
D + ÃF,L

)∥∥∥
P̃(γ)

< 1

and hence (4.43) whenever (4.44) holds.

It can be seen from (4.44) that the smaller is ÃF,L (the part of the

dynamics due to interaction between subdomains) as compared to ÃL
D (the

local dynamics in the subdomains), the easier it becomes to achieve stability.

In fact, in the limit case of no interaction (ÃF,L = 0) the condition is satisfied

for any γ > 1. In this respect, it is worth pointing out that the quantity(
ÃL
D

)−1

ÃF,L is usually small because of the structure of the FE matrices

and the fact that the interactions are limited to the interfaces. For instance,

in the case study of Section 4.6 stability of the filter is guaranteed for a wide

range of values of γ. Nevertheless, in general it is not possible to guarantee

that a value of γ satisfying (4.44), or (4.43), always exists. This state of
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affairs can be understood by noting that in (4.44) both the left-hand and

the right-hand side increase with γ. In case a suitable γ cannot be found, the

stability of the filter can be guaranteed by resorting to a slight modification

of the proposed approach which is summarized in the following procedure:

a) select the time interval δ so that the dynamics of (4.37) is asymptotically

stable;

b) pick any γ > 1 (for example, by minimizing, the left-hand side of (4.43));

c) find a scalar κ > 0 such that

ρ
{[

I− κ L̃(γ)C̃
] (

ÃL
D + ÃF,L

)}
< 1 ; (4.46)

d) modify the correction step (4.39) as follows

x̂q+1|q+1 = x̂q+1|q + κ L̃q+1(ỹq+1 − C̃ x̂q+1|q) . (4.47)

Notice that the stability of (4.37), obtained from time-discretization of the

asymptotically stable system (4.7), can be preserved by making δ suitably

small when the time-discretization scheme is zero-stable (a property which

either holds when (4.31) is satisfied or can be enforced by means of the ar-

rangements of Remark 3). Further, under stability of (4.37), condition (4.46)

can be always satisfied as well for suitably small values of κ. The idea is that

the gain of the local Kalman filters should not be too large so that stability

is preserved. Hence, in the considered setting, the above-reported procedure

is guaranteed to succeed. Finally, it is an easy matter to verify that, under

condition (4.46), the distributed finite-element Kalman filter with the modi-

fied correction step (4.47) leads to an asymptotically stable estimation error

dynamics (the proof is analogous to the one of Theorem 2).

As a final remark, we point out that, once the original filtering problem

has been recast in the form (4.38)-(4.39), the problem of designing the filter

gains falls within the wider framework of partition-based distributed Kalman

filtering (see [60] and the reference therein for an insight on this problem).

The proposed solution has the advantage of requiring the tuning of one (or

few) scalar quantities and hence is well-suited to keeping the computational

load manageable even when the state vector has a large dimension (as it

usually happens in the context of field estimation). Further, the proposed

approach requires that only the estimates pertaining to the interfaces are

exchanged between neighboring nodes, thus keeping the communication re-

quirements as low as possible.
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4.6 Numerical examples

This section provides numerical examples and relative results illustrating

the effectiveness of the proposed distributed finite element Kalman filter

presented in Section 4.4. Consider the transient heat conduction prob-

lem, introduced in Section 4.2 as a particular example of (4.1), in a thin

polygonal metal plate with constant, homogeneous, and isotropic proper-

ties. Assuming that the thickness of the slab is considerably smaller than

the planar dimensions, then the temperature can be assumed to be con-

stant along the width direction, and the problem is reduced to two di-

mensions. Hence, the diffusion process in a thin plate is modelled by the

2D parabolic PDE ∂x/∂t − λ
(
∂2x/∂ξ2 + ∂2x/∂η2

)
= 0 with boundary

condition B(x) = α(ξ, η) ∂x/∂n + β(ξ, η)x such that α(ξ, η)β(ξ, η) ≥ 0,

α(ξ, η) + β(ξ, η) > 0, ∀(ξ, η) ∈ ∂Ω. Notice that, x(ξ, η, t) denotes the tem-

perature as a function of time t and spatial variables (ξ, η) ∈ Ω, f = 0 stands

for no inner heat-generation, whereas λ = 1.11× 10−4
[
m2/s

]
is the thermal

diffusivity of copper at 25 [◦C] (Table 12, Appendix 2 in [61]), assumed to

be constant in time and space.

A network of S = 23 sensors (Fig. 4.2) located in the known positions

si = [ξi, ηi]
T

is assumed to collect point temperature measurements at regu-

larly time-spaced instants tq = q Ts, with Ts = 100 [s] and standard deviation

of measurement noise σv = 0.1 [K]. The considered sensor network has been

chosen to guarantee local observability (assumption A2).

The Matlab PDE Toolbox is used to generate the triangular mesh (252

vertices, 436 elements) shown in Fig. 4.2 of size b = 0.2[m] (defined as

the length of the longest edge of the element), over the global 2D domain

Ω. Next, as can be seen from Fig. 4.2, the domain under consideration is

decomposed into N = 8 overlapping subdomains Ωm, i.e. N = {1, . . . , 8},
each being assigned to a node with local processing and communication

capabilities. It is worth pointing out that domain decomposition comes with

an appropriate partitioning of the original global mesh so that the resulting

local grids actually match on the regions of overlap between subdomains.

Domain triangulation allows for a simple construction of basis functions

{φj(ξ, η)}nj=1, which are continuous piecewise polynomial functions, such

that their value is unity in vertex j and vanishes at the remaining vertices,

i.e.

φj(ξi, ηi) =

{
1 if i = j i, j = 1, 2, ..., n

0 if i 6= j
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Figure 4.2: Global FE mesh (grid of solid lines) generated over Ω and do-

main decomposition into 8 overlapping subdomains (dashed polygons). The

position of each sensor is denoted by ∗.

Here we use continuous piecewise linear functions defined on each element as

ψE(ξ, η) = a+ b ξ + c η with (ξ, η) ∈ E and a, b, c ∈ R, so that each function

is uniquely determined by its three nodal values xi = ψE(ξi, ηi), i ∈ E .

Basis functions are used off-line by the FE centralized filter and in the

distributed setup for the element-by-element construction (described in Sec-

tion 3.4) of matrices S and M, introduced in (4.6). Then, the state dynamics

of the centralized filter can be directly computed, whereas local estimators

first need to extract matrices Mmm,Smm and Mmj , Smj in order to calcu-

late Am,Amj and Āmj which finally provide the finite-dimensional model

of temperature evolution in Ωm through (4.22). Notice that these matri-

ces are evaluated for a fixed sampling interval δ = Ts/L, where L denotes

the number of distributed prediction iterations Lq introduced in Section 4.4,

here assumed constant in each sampling interval q. For a fair comparison

between centralized and distributed approaches, a constant time integration

interval ∆ = 10 [s] has been chosen for the centralized filter.

Notice that, being {φj(ξ, η)}nj=1 functions with a small support defined by
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(b) S̃D: 1632 nonzero elements (red); S̃F :

223 nonzero elements (blue)

Figure 4.3: Sparsity pattern of 252×252 matrix S (a), and 286×286 matrix

S̃ = S̃D + S̃F (b).

the set of triangles sharing node j, the resulting mass and stiffness matrices

will be sparse, with the same pattern shown in Fig. 4.3a. In Fig. 4.3b it can

be seen how the structure of the stiffness matrix changes when considering

the augmented system (4.25). The distributed pattern of the networked

system is highlighted in Fig. 4.4, where ÃD represents each subsystem as

isolated, though affected by the evolution of neighbors through ÃF .

In the following experiments, both FE filters assume the initial tem-

perature field of the plate uniform at x0(ξ, η) = 300 [K], and the a-priori

estimate taken as first guess x̂1|0(ξ, η) = 305 [K], with diagonal covariance

P1|0 = 20 I. Moreover, a zero-mean white noise process has been assumed,

with covariance Q = σ2
w I, where σw = 3 [K]. Taking into consideration

model uncertainty, the ground truth of the experiments is represented by

a real process simulator implementing a finer mesh (915 vertices, 1695 ele-

ments) of size b = 0.1 instead of b = 0.2, running at a higher sampling rate

(1Hz), and aware of the possibly time-varying boundary conditions of the

system. On the other hand, both distributed and centralized filters have no

knowledge of the real system boundary conditions, so they simply assume

the plate adiabatic on each side.

The performance of the novel distributed FE Kalman filter has been
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Figure 4.4: Sparsity pattern of ÃD (red) and ÃF (black).
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Figure 4.5: Scenario 1: Comparison of performance of centralized and dis-

tributed FE-KF (γ = 1.1).

evaluated in terms of Root Mean Square Error (RMSE) of the estimated

temperature field, averaged over a set of about 300 sampling points uniformly

spread within the domain Ω, and 500 independent Monte Carlo realizations.
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Figure 4.6: Scenario 1: True and estimated temperature fields in Kelvin (K)

at time steps q = 50 (a,b,c) and q = 200 (d,e,f).

Scenario 1

In the first example, transient analysis is performed on a thin adiabatic L-

shaped3 plate (seen in Fig. 4.2) with a fixed temperature along the bottom

edge. This is a problem with mixed boundary conditions, namely a non-

homogeneous Dirichlet condition on the bottom edge of the plate ∂Ω1, i.e.

x = T1 on ∂Ω1, (4.48)

where T1 = 315 [K], and natural homogeneous Neumann boundary condi-

tions on the remaining insulated sides ∂Ω2 = ∂Ω \ ∂Ω1, so that

∂x/∂n = 0 on ∂Ω2. (4.49)

3An L-shaped domain is traditionally used in boundary-value problems as a basic

yet challenging example. It is the simplest geometry for which solutions to the wave

equation cannot be expressed analytically, and thus numerical computation is necessary.

Furthermore, the non-convex corner causes a singularity in the solution. This singularity

limits the accuracy of finite difference methods with uniform grids. Anecdote: Cleve

Moler, cofounder of MathWorks, used the L-shaped region as the primary example in his

doctoral thesis. This is why MathWorks has adopted a modified surface plot of the first

eigenfunction as the company logo.



86 Centralized and distributed design of field estimators

Time (s) ×104
0 1 2 3 4 5 6 7 8 9 10

R
M

SE
 (K

)

0

0.5

1

1.5

2

2.5

3

3.5

4
  dFE-KF (L = 1)

  dFE-KF (L = 2)

  dFE-KF (L = 10)

  cFE-KF

Figure 4.7: Scenario 2: Comparison of performance of centralized and dis-

tributed FE-KF (γ = 1.1).

Figure 4.8: Scenario 2: True and estimated temperature fields in Kelvin (K)

at time steps q = 350 (a,b,c) and q = 900 (d,e,f).

The duration of each Monte Carlo run is fixed to 3× 104 [s] (300 samples).
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Fig. 4.5 illustrates the performance comparison between centralized (cFE-

KF) and distributed (dFE-KF) filters for γ = 1.1 and for three different

values of the parameter L adopted in the distributed framework. First of

all, it can be seen that both FE algorithms succeed in reconstructing the

true field of the system based on fixed, point-wise temperature observations.

Moreover, the performance of the distributed FE filters is very close, even for

L = 1, to that of the centralized filter, which collects all the data in a central

node. Last but not least, in the distributed setting the RMSE behaviour

improves by increasing the number L of distributed prediction steps. This is

true for certain values of γ, whereas for others the difference in performance

is considerably reduced, as clearly presented in Fig. 4.9. Note that the

covariance boosting factor used in (4.24) is set to γL = L
√
γ, ∀L = 1, 2, 10,

in order to obtain a fairly comparable effect of covariance inflation after L

distributed prediction steps for different distributed filters. Further insight

on the performance of the proposed FE estimators is provided in Fig. 4.6,

which shows the true and estimated temperature fields at two different time

steps q = 50 and q = 200, obtained in a single Monte Carlo experiment by

using cFE-KF and dFE-KF with L = 10.

Scenario 2

In the second experiment, two time-varying disturbances have been added in

order to test the robustness of the proposed FE estimators in a more chal-

lenging scenario. To this end, different boundary conditions are considered.

Specifically, a time-dependent Dirichlet condition (6.23) with T1 = 310 [K]

for time steps q ∈ {0, ..., 299}, and T2 = 320 [K] for q ∈ {300, ..., 1000}, is

set on all nodes of the bottom edge ∂Ω1. The top edge of the plate ∂Ω3 is

first assumed adiabatic for q ∈ {0, ..., 699}, then the inhomogeneous Robin

boundary condition

λ∂x/∂n + ν x = ν xe on ∂Ω3 (4.50)

is applied for q ∈ {700, ..., 1000}. This models a sudden exposure of the

surface to a fluid, fixed at an external temperature xe = 300 [K], through a

uniform and constant convection heat transfer coefficient ν = 10 [W/m2K].

The remaining edges ∂Ω2 where (6.24) holds, are assumed thermally insu-

lated for the duration of the whole experiment, lasting 105 [s] (1000 samples).

Performance of the proposed distributed filter has been evaluated for

different values of L over 500 independent Monte Carlo runs and compared to
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Figure 4.9: Scenario 1: Comparison of the mean value of the RMSE for

different values of γ.

the behavior of the centralized FE Kalman filter. Simulation results, in Fig.

4.7, show that the proposed FE estimators provide comparable performance

to the centralized filter, moreover the gap reduces as L increases. It is worth

pointing out that the peaks appearing in the RMSE plot, displayed in Fig.

4.7, are due to the abrupt changes of the unknown boundary conditions,

which cause considerable jumps of the estimation errors at time steps 300

and 700. Nevertheless, the filters under consideration manage to compensate

for the lack of knowledge and effectively reduce the error, even if, due to

persistent and cumulative disturbances on the inferred field profile, errors do

not converge to zero. The original ground truth and the reconstructed fields

are depicted in Fig. 4.8 for q = 350 and q = 900.

4.7 Conclusions

This chapter has dealt with the centralized and, especially, the decentralized

estimation of a time-evolving and space-dependent field governed by a linear

partial differential equation, given point-in space measurements of multiple

sensors deployed over the area of interest. The originally infinite-dimensional

filtering problem has been approximated into a finite-dimensional large-scale

one via the finite element method and, further, a distributed approach in-

spired by the parallel Schwarz method for domain decomposition has allowed

to nicely scale the overall problem complexity with respect to the number of



4.7 Conclusions 89

used processing nodes. Combining these two ingredients, a novel computa-

tionally efficient distributed finite-element Kalman filter has been proposed

to solve in a decentralized and scalable fashion filtering problems involving

distributed-parameter systems. Both numerical stability of the considered

approximation scheme and exponential stability of the proposed distributed

finite-element Kalman filter have been analysed. Simulation experiments

have been presented in order to demonstrate the validity of the proposed

approach. The results presented in this chapter can be applied to the es-

timation/localization of unknown diffusive sources, addressed in the next

chapter.
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Chapter 5

Unknown source in the field:

detection and estimation

5.1 Introduction

The task of reconstructing the state of spatially distributed systems ad-

dressed in Chapter 4 becomes particularly challenging in the presence of un-

known sources (e.g., of heat, polluting agents, toxic biochemical substances,

etc.) of unknown intensity and position responsible for inducing and altering

the target field. To this end, the source estimation problem is considered,

which consists of detecting and localizing a concentrated diffusive source as

well as estimating its intensity and monitoring the induced field.

The estimation of diffusive sources has recently received great attention

within both the signal processing and control communities for at least two

reasons: i) the low-cost availability of wireless sensors measuring the induced

field (e.g. temperature, concentration) which can be deployed at low cost

and in large number over the area to be monitored; ii) the strategic im-

portance of such a task in homeland security, environmental and industrial

monitoring, and situation awareness for a wide range of applications (e.g.

fire detection, pollution monitoring, detection and localization of terrorist

biochemical attacks, etc.). Two mainstream approaches to the problem of

source estimation can be found in the literature. A first approach [62]- [63]

models the source-induced field in steady-state, thus disregarding its tran-

sient time evolution, and therefore yields a parametric (static) estimation

problem. It is worth to point out that, for slowly diffusing sources, this can

91
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imply a very long, possibly unacceptable, detection/localization delay. Con-

versely, the second approach [64]- [65] is to explicitly take into account the

spatiotemporal diffusion dynamics thus yielding a state (dynamic) estima-

tion problem.

In order to allow faster detection/localization of slowly diffusing sources,

here the latter, dynamic, approach will be followed. In particular, the spa-

tiotemporal diffusion dynamics is modelled by an advection-diffusion par-

tial differential equation with appropriate boundary conditions and a point

(concentrated) source is considered. The finite element method is exploited

for spatial discretization of the PDE. After time-discretization, the original

infinite-dimensional boundary value problem is, therefore, transformed into

a finite-dimensional, possibly large-scale, discrete-time linear system with

state vector consisting of the field values in the vertices of the FE mesh,

input vector representing the source intensity and input matrix depending

on the source location. In this framework, we provide two major contribu-

tions to the source estimation problem. First, inspired by the classic notion

of structural identifiability [66]- [67] considered as an a priori analysis for

experiment design [67], this work defines the concept of source identifiabil-

ity, i.e. the possibility of detecting the source and uniquely determining its

position and intensity from available pointwise-in-time-and-space field mea-

surements.

Specifically, system-theoretic conditions for identifiability are derived in

terms of rank tests on suitable polynomial matrices for both cases in which

the source intensity is regarded as an unknown input or is modeled as the

output of an appropriate exosystem. Then, a multiple-model Kalman filter-

ing approach to source estimation is undertaken by considering all hypothe-

ses (modes) corresponding to the source location in any possible element

of the FE mesh plus a further hypothesis accounting for the possible source

absence. Both cases of motionless source with unknown position and of mov-

ing source are addressed, resorting to the static Multiple Model (MM) and,

respectively, dynamic Interacting Multiple Model (IMM) algorithms. All the

results of this chapter are presented in [68].

The rest of the chapter is organized as follows. Section 5.2 formulates

the source estimation problem of interest. Section 5.3 derives a FE approx-

imation of the original infinite-dimensional source diffusion model. Section

5.4 is devoted to the source identifiability analysis. Section 5.5 presents

the multiple-model Kalman filtering approach to source estimation. Section
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5.6 demonstrates the effectiveness of the proposed approach by means of a

numerical example. Finally, Section 5.7 ends the chapter with concluding

remarks.

5.2 Problem formulation

Let us consider a spatially distributed process governed by a PDE of the

form (2.3)
∂x

∂t
+ L(x) = f in Ω (5.1)

with possibly inhomogeneous boundary condition

B(x) = g on ∂Ω . (5.2)

where: x(p, t) is the space-time dependent scalar field of interest, defined

over the space-time domain Ω × R; the space domain Ω is supposed to be

bounded and with smooth boundary ∂Ω; p ∈ Ω denotes the d-dimensional

(d ∈ {1, 2, 3}) position vector; t ∈ R+ denotes time; L(·) and B(·) are the

advection-diffusion and, respectively, Robin operators defined as follows

L(x)
4
= −λ∇2x+ vT∇x (5.3)

B(x)
4
= ∂x/∂n + βx; (5.4)

λ is a constant diffusion coefficient; v(p) is the advection velocity vector;

β(p) ≥ 0 is a, possibly space-dependent, coefficient; ∂x/∂n = nT∇x, n

being the outward pointing unit normal vector of the boundary ∂Ω; g(p, t)

is the forcing term acting on the boundary ∂Ω; f(p, t) is the point source

input modeled as (see Section 3.4.4)

f(p, t) =

{
0, if no source exists

u(t) δ
(
p− p0(t)

)
, otherwise

(5.5)

with unknown intensity u(t) and position p0(t) ∈ Ω. The aim is to detect the

source presence and jointly estimate u(t),p0(t), x(p, t) given measurements

yk,i = hi (x (si, tk)) + vk,i (5.6)

provided by sensors i ∈ S 4= {1, . . . , S}, located at positions si ∈ Ω, at

discrete sampling instants tk, k ∈ Z+ = {1, 2, . . . }, such that 0 < t1 < t2 <

· · · .
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The above stated dynamic estimation problem is clearly infinite-dimensional.

It will be shown in the next section how it can be approximated into a finite-

dimensional one by exploiting the finite element (FE) method.

5.3 Finite-element approximation

As previously described in Section 2.2, equation (5.1) with boundary condi-

tion (5.2) can be recast into the following weak form:

∫

Ω

∂x

∂t
ψ dp − λ

∫

Ω

∇2x ψ dp +

∫

Ω

vT ∇x ψ dp =

∫

Ω

fψ dp (5.7)

where ψ(p) is a generic space-dependent weight function. By applying

Green’s identity and thanks to (5.2), one obtains:

∫

Ω

∂x

∂t
ψ dp + λ

∫

Ω

∇Tx∇ψ dp +

∫

Ω

vT ∇x ψ dp

− λ
∫

∂Ω

(g − βx)ψ dp =

∫

Ω

f ψ dp (5.8)

Following the finite-element method introduced in Section 3.1, by subdivid-

ing the domain Ω into a suitable set of non overlapping elements and by

defining a suitable set of basis functions φj(p), j = 1, . . . , n, on them, it is

possible to write the approximation (3.6) of the unknown function x(p, t) as

x(p, t) =

n∑

j=1

φj(p)xj(t) = φT (p) x(t) (5.9)

where: xj(t) is the unknown expansion coefficient of function x(p, t) rela-

tive to time t and basis function φj(p); φ(p)
4
= col{φj(p)}nj=1 and x(t)

4
=

col{xj(t)}nj=1. The finite elements define a FE mesh with vertices pj ∈
Ω, j = 1, . . . , n.

By choosing the test function ψ equal to the selected basis functions,

the Galerkin method, introduced in Section 3.1 is applied and the following

equation is obtained
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[∫

Ω

φ(p)φT (p)dp

]

︸ ︷︷ ︸
M

ẋ(t) +

[
λ

∫

Ω

∇φ(p)∇φT (p)dp

]

︸ ︷︷ ︸
Sα

x(t) (5.10)

+

[∫

Ω

φ(p) vT (p)∇φT (p) dp

]

︸ ︷︷ ︸
Sv

x(t) +

[
λ

∫

∂Ω

β(p)φ(p)φT (p) dp

]

︸ ︷︷ ︸
Sβ

x(t)

=

[∫

Ω

φ(p) δ(p− p0)dp

]

︸ ︷︷ ︸
φ(p0)

u(t) +

[
λ

∫

∂Ω

φ(p)φT (p)dp

]
g(t)

︸ ︷︷ ︸
Sg

where in the integrals on the contour ∂Ω it is assumed that the various

functions are the restrictions to ∂Ω of the original functions defined over

Ω, and that for g(p, t) an expansion akin to (6.25) holds, i.e. g(p, t) =∑n
j=1 φj(p) gj(t) = φT (p) g(t).

It is evident how all integrals in the LHS (5.10) depend only on basis func-

tions and can be computed a priori. In particular, matrices Sα,Sβ ,Sg,Sv
can be computed as discussed in Section 3.4.

Then, by regularly discretizing in time (5.10) with sampling interval δt

(i.e. tk = k δt) and approximating the time derivative with the finite dif-

ference ẋ(t) ' (xk+1 − xk)/δt, the following discrete-time linear descriptor

system is obtained:

M

(
xk+1 − xk

δt

)
+ (Sα + Sβ + Sv) xk+1 ' φ(p0)uk + Sg (5.11)

from which one obtains the discrete-time model

xk+1 = Axk + B(p0)uk + bk + wk (5.12)

where:

uk = u (tk+1)

A =
[
I + δt M−1 (Sα + Sβ + Sv)

]−1

B(p0) =
[
I + δt M−1 (Sα + Sβ + Sv)

]−1
M−1δt φ(p0)

bk =
[
I + δt M−1 (Sα + Sβ + Sv)

]−1
M−1δt Sg

(5.13)

and wk is a process disturbance taking into account also the space-time

discretization errors. For a quantitative characterization of such errors, the
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reader can refer to [69]. Notice that, in equation (6.29), the intensity uk and

the position p0 of the point source input are unknown and hence must be

estimated together with the state vector xk. As for the intensity uk, different

models are possible:

(a) uk is treated as an unknown input for which no information on the possible

time evolution is available [70,71];

(b) uk is unknown but a dynamic model for its time evolution is available, i.e.,

it is supposed that uk is generated as the output of an auxiliary linear

system (called exosystem).

qk+1 = F qk + ζk

uk = H qk

where qk is the exosystem state and ζk the disturbance input. Here, without

loss of generality the pair (F,H) is supposed to be observable.

For instance, if it is known that the unknown intensity uk can vary slowly

with time, its time evolution can be modeled as a random walk by letting F =

H = 1 and taking ζk as a zero-mean white noise. Of course, the preferable

model depends on the situation under consideration and, specifically, on

possible physical insights on the source intensity.

5.4 Source identifiability

In this section, an analysis on the possibility of correctly identifying the

unknown source location p0 and intensity uk is provided both in cases (a)

and (b). As usually done in observability/identifiability analysis, the study

is carried out in the ideal noise-free case by supposing that the measurements

yk are generated by

xk+1 = Axk + B(p0)uk
yk = C xk

(5.14)

Accordingly, in case (b), the intensity dynamics will be supposed to be noise-

free by letting

qk+1 = F qk
uk = H qk

(5.15)
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Notice that the known input bk is not considered in equation (5.14) since,

thanks to the superposition principle for linear systems, its contribution is

immaterial to the source identification problem.

Let now S be the linear space of all real-valued sequences on the non-

negative integers Z+ and let us denote by U ⊆ S the set of all possible

time-evolutions of the intensity uk which are consistent with the available

model. Clearly, in case (a) we simply have U = S, while in case (b) U is

the set of all the possible output behaviors of system (5.15). Let also denote

by y(x0,p
0, u) the output behavior of system (5.14) when the initial state

is x0, the source location is p0 and the source intensity evolves according to

the sequence u. The following notion can be introduced.

Definition 2. The point source is said to be identifiable if

y(x0,p
0, u) 6= y(x̄0, p̄

0, ū) (5.16)

for any pair of source locations p0, p̄0 ∈ Ω, any pair of initial states x0, x̄0,

and any nonzero pair of intensity sequences u, ū ∈ U , with (p0, u) 6= (p̄0, ū).

In words, identifiability of the point source corresponds to the fact that

different sources (in terms of location and intensity) always give rise to differ-

ent output behaviors or, equivalently, corresponds to the invertibility of the

mapping from (p0, u) to the output sequence y. Notice that, in the above

definition, we exclude the trivial case in which both u and ū are zero, but

we allow that either u or ū be zero so as to account for the possibility of

distinguishing between presence or absence of the source input.

Since only the observable part of (5.14) influences the output behavior y,

it is convenient to consider an alternative representation of system (5.14) ob-

tained by means of the Kalman observability decomposition. This amounts

to considering an invertible transformation matrix T such that

T−1AT =

[
A11 0

A21 A22

]
, T−1B =

[
B1(p0)

B2(p0)

]

CT = [C1 0] . (5.17)

with (A11,C1) observable. Of course, when C is chosen so that (A,C) is

observable, we have A11 = A and C1 = C. All the results of this section

will refer to the system (5.14) or (5.14)-(5.15) in the case (b), under the



98 Unknown source in the field: detection and estimation

observability decomposition (5.17). By exploiting standard results on ob-

servability and left invertibility of linear systems, the following theorem can

now be stated.

Theorem 7. For any pair of distinct source locations p0, p̄0 ∈ Ω, consider

the polynomial matrix

Ψ(z,p0, p̄0) =

[
zI−A11 B1(p0) B1(p̄0)

C1 0 0

]

with z ∈ C. Then, the following facts hold:

(i) in case (a), the source is identifiable if and only if

rank
{
Ψ(z,p0, p̄0)

}
= no + 2. (5.18)

for any z ∈ C and for any p0, p̄0 ∈ Ω with p0 6= p̄0. Here no is the

dimension of the observable part of (5.14);

(ii) in case (b), the source is identifiable if and only if the rank condition

(5.18) holds for any z ∈ sp{F} and for any p0, p̄0 ∈ Ω with p0 6= p̄0.

Here, sp{F} stands for the spectrum of the matrix F. �

Proof: Let x1,k ∈ Rn0 be the state vector of the observable part of (5.14).

Then, we have
x1,k+1 = A11x1,k + B1(p0)uk

yk = C1 x1,k

Further, thanks to linearity, the overall output behavior can be decomposed

as the sum of the natural (free) response yn(x1,0) and the forced response

yf(p0, u). As a consequence the identifiability condition (5.16) can be written

as yn(x1,0) + yf(p0, u) 6= yn(x̄1,0) + yf(p̄0, ū) or equivalently as yn(x1,0 −
x̄1,0) + yf(p0, u) − yf(p̄0, ū) 6= 0. It is now immediate to see that source

identifiability is equivalent to requiring that the system

x1,k+1 = A11x1,k + B1(p0)uk + B1(p̄0)ūk
yk = C1 x1,k

(5.19)

does not exhibit a zero output trajectory when its input (u, ū) is different

from 0. In case (a), when the input trajectories can be arbitrary, this latter

condition is clearly equivalent to the left invertibility of system (5.19). Then,
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fact (i) follows from well-known results [72] by noting that Ψ(z,p0, p̄0) cor-

responds to the Rosenbrock’s system matrix of (5.19). As for case (b), since

both uk and ūk are supposed to be generated by an exosystem of the form

(5.15), we can consider the augmented system resulting from the cascade

interconnection of (5.19) with
[

qk+1

q̄k+1

]
=

[
F 0

0 F

] [
qk
q̄k

]

[
uk
ūk

]
=

[
H 0

0 H

] [
qk
q̄k

] (5.20)

Then, the identifiability condition corresponds to the fact that the autonomous

system (5.19)-(5.20) does not exhibit a zero output trajectory when its initial

condition is different from 0, or in other words to the fact that (5.19)-(5.20)

is observable. In order to study the observability of (5.19)-(5.20), it is con-

venient to consider an alternative representation of such a system in terms

of the Polynomial Matrix Description (PMD)



zI−A11 B1(p0) B1(p̄0)

0 ∆(z) 0

0 0 ∆(z)






x1,k

uk
ūk


 = 0

yk =
[

C1 0 0
]



x1,k

uk
ūk




where ∆(z) = det(zI−F). In fact, we can now use the PBH observability test

for PMDs (see [73], page 562) in order to conclude that (5.20) is observable

if and only if

rank




C1 0 0

zI−A11 B1(p0) B1(p̄0)

0 ∆(z) 0

0 0 ∆(z)


 = no + 2

for any z ∈ C. In turn, the latter condition is equivalent to requiring that

(5.18) holds for any z ∈ sp{F} (recall that the roots of ∆(z) are the eigen-

values of F). �

Notice that the only difference between cases (a) and (b) is that in the

latter case only the values of z corresponding to eigenvalues of the exosystem
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have to be considered in the rank test. Further, in this case, the identifiability

condition can be rephrased in terms of system gains as follows.

Corollary 1. Consider case (b) and suppose that sp{A} and sp{F} are

disjoint. Then, the source is identifiable if and only if

rank
[

C(zI−A)−1B(p0), C(zI−A)−1B(p̄0)
]

= 2

for any z ∈ sp{F} and any p0, p̄0 ∈ Ω with p0 6= p̄0. �

From Theorem 7 and Corollary 1, it is evident that at least 2 sensors

are needed in order to guarantee distinguishability of two source locations

p0, p̄0. However, this is just a lower bound since, in general, a larger number

of sensors may be needed. The main drawback of the derived rank conditions

is that they have to be satisfied for any pair of source locations p0, p̄0 be-

longing to the space domain Ω. This means that, in order to verify whether

a given set of sensors ensures source identifiability, an infinite number of

conditions have to be checked, which clearly makes the test impractical. A

first, approximated, approach to sidestep such a difficulty would amount to

restricting the attention only to a finite number of possible source locations,

for example corresponding to the vertices pi of the FE mesh. A second, more

theoretically sound approach consists in looking for alternative conditions by

exploiting the structure of the system matrices resulting from application of

the FE method.

With this respect, consider the most typical situation in which the el-

ements are chosen as d-dimensional simplexes (i.e., intervals when d = 1,

triangles when d = 2, or tetrahedrons when d = 3) and the basis functions

φj(p) are piecewise linear. Further, let E1, . . . , Ev denote the elements of

the considered mesh and, for a generic element Ej , let Vj ⊂ {1, . . . , n} be

the set of indices corresponding to the vertices of Ej . Notice that, for a d-

dimensional simplex, Vj contains exactly d+ 1 elements. Then, in this case,

the input matrix B(p0) can be written as a convex combination of the input

matrices associated to the vertices of the element Ej containing p0, i.e.,

B(p0) =
∑

i∈Vj
ωi(p

0)B(pi) (5.21)

where ωi(p
0) ≥ 0 and

∑
i∈Vj ωi(p

0) = 1. This makes it possible to derive

sufficient conditions for source identifiability to be checked only for each pair
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of elements. To this end, for a generic element Ej , let B(Ej) denote the

matrix obtained by juxtaposition of the column matrices B(pi) with i ∈ Vj ,
and let B1(Ej) be obtained in an analogous way from the matrices B1(pi)

with i ∈ Vj . Then, the following result holds.

Theorem 8. Let the input matrices be as in (5.21) and, for any pair of

distinct elements Ej , E` of the mesh, consider the polynomial matrix

Ψj`(z) =

[
zI−A11 B1(Ej) B1(E`)

C1 0 0

]

with z ∈ C. Then, the following facts hold:

(i) in case (a), the source is identifiable if

rank {Ψj`(z)} = no + |Vj ∪ V`| (5.22)

for any z ∈ C and for any Ej , E` with j 6= `;

(ii) in case (b), the source is identifiable if the rank condition (5.22) holds

for any z ∈ sp{F} and for any Ej , E` with j 6= `. �

Proof: Consider a pair of distinct elements Ej , E` and suppose that condition

(5.22) holds for some z. Clearly, this implies that

rank
[

B1(Ej) B1(E`)
]

= |Vj ∪ V`| . (5.23)

Notice also that, for any p0 ∈ Ej , one has B1(p0)uk = B1(Ej)ηk with ηk =

col
(
ωi(p

0)uk, i ∈ Vj
)
. Hence, it is an easy matter to verify that condition

(5.23) implies that one can have B1(p0)uk = B1(p̄0)ūk, or equivalently

B1(Ej)ηk = B1(E`)η̄k, if and only if p0 = p̄0 and uk = ūk. Then, fact (i)

follows from the observation that, when condition (5.22) holds for any z ∈ C,

the output behavior of the system

x1,k+1 = A11x1,k + B1(Ej)ηk −B1(E`)η̄k
yk = C1 x1,k

(5.24)

can be zero for any k if and only if B1(Ej)ηk = B1(E`)η̄k for any k, which

as pointed out above implies p0 = p̄0 and uk = ūk. As for fact (ii), it can

be proved along the same lines of the proof of Theorem 1 by considering the

cascade interconnection of (5.24) with (5.20). �
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Notice that in condition (5.22), the term |Vj ∪V`| represents the number

of distinct vertices in Ej ∪ E`. As a consequence, |Vj ∪ V`| ≤ 2(d+ 1) where

the equality holds if and only if Ej and E` have no common vertices. Hence,

Theorem 8 suggests that, in the d-dimensional case, 2(d+ 1) sensors may be

needed in order to have source identifiability.

Remark 4. The rank condition of Theorem 8 provides a computationally

feasible way to verify whether a given set of sensors guarantees source iden-

tifiability, since it has to be checked only for a finite number of cases, i.e.,

for each pair of distinct elements. Additional insights can be gained by re-

calling that system (5.14) can also be written as a linear descriptor system

[see (5.11)]

Exk+1 = Mxk + δtφ(p0)uk
yk = C xk

(5.25)

where the matrices E, M and φ(p0) have very specific structures. In par-

ticular, the non-zero elements of the matrices E, M correspond to connected

vertices in the graph associated to the FE mesh. Further, for any mesh ver-

tex pi, φ(pi) coincides with ei, the i-th vector of the canonical basis. If it

is assumed that system (5.25) is observable, it can be easily shown that in

condition (5.22) the matrix Ψj`(z) can be replaced by

Ψ̃j`(z) =

[
zE−M φ(Ej) φ(E`)

C 0 0

]

where φ(Ej) denotes the matrix obtained by juxtaposition of the column ma-

trices φ(pi) = ei with i ∈ Vj. Hence, if it is further assumed that the

sensor locations coincide with vertices of the FE mesh, it is possible to relate

the rank of the matrix Ψ̃j`(z) to the topology of the FE mesh as well as to

the sensor locations. In fact, results on the rank of matrices of the form of

Ψ̃j`(z) for systems like (5.25) defined over graphs have been recently obtained

in the literature [74, 75]. While such results are only generic (i.e., they hold

for almost all the dynamical systems compatible with the graph topology, but

counterexamples can exist), nevertheless they provide useful guidelines on

where to place the sensors inside the domain Ω. The interested reader is

referred to [74, 75] for further details on this issue.
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5.5 Source estimation

Based on the fact that distinct source locations correspond to different pro-

cess behaviors, and thanks to finite element approximation, the key idea of

the proposed source estimation algorithms relies upon the assumption that

system (6.29), at each time step, obeys to one of a finite set of diffusion mod-

els. To this end, the Multiple Model (MM) approach [76] provides a suitable

tool, as it accounts for the uncertainty about the system input location,

assuming that the real evolution of the system follows one of the possible

modes of operation. In particular, the idea is to match each hypothesis of

source being located in a generic element of the mesh, to a distinct operating

mode of the system. This makes it possible to run in parallel a finite num-

ber of mode-matched Kalman filters, one for each element of the generated

mesh. Hence, each mode j associated to the hypothesis that a point source

is located in p0, contained in element Ej , is characterised by the following

mode-matched model

xk+1 = Axk + B(Ej)ω(p0)uk + wk, j = 1, 2, ..., v

yk = C xk + vk
(5.26)

where ω(p0) is the (d+1)-dimensional column vector of coefficients ωi(p
0), i ∈

Vj , introduced in Section 5.4. It is worth noting that in order to be able to

detect new sources, an extra source-free operating mode, based on the as-

sumption that no point source is present, needs to be added to the set of

possible modes of the MM algorithm. Thus, including the no-source mode,

from now on denoted as v̄ for v̄ = v + 1, and recalling the mesh generates

elements E1, ..., Ev, the set of possible modes becomes v̄-dimensional.

Bearing in mind the previous points about source detection and localisa-

tion, the additional joint source intensity and state estimation can be carried

out by constructing an augmented system for the MM estimator, as the ag-

gregate of the original system (5.26) and a suitable model for the unknown in-

put time evolution. To this end, let us introduce ηk = col
(
ωi(p

0)uk, i ∈ Vj
)

so that B(p0)uk = B(Ej)ηk. Then, the augmented system for a generic

mode j originated from (5.26), takes the following form for j = 1, 2, ..., v

[
xk+1

ηk+1

]
=

[
A B(Ej)
0 I

] [
xk
ηk

]
+

[
wk

ζk

]

yk = [C 0]

[
xk
ηk

]
+ vk

(5.27)
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whereas, for j = v̄

xk+1 = Axk + wk

yk = C xk + vk
(5.28)

Note that in (5.27) the dynamics of the source intensity uk are assumed to

follow a discrete-time random walk. As a result, the joint source and field

estimation problem can be reduced to the joint estimation of xk and ηk for

each time step k. Assuming the source may move within the domain, i.e. the

correct operating mode may switch over time, it is convenient to employ a

dynamic MM technique, e.g. Interacting Multiple Model (IMM) [76], which

allows for mode jumps, limiting at the same time the number of hypotheses

to the number of filters. Otherwise, the source of interest is assumed mo-

tionless, i.e. fixed in an unknown position of the monitored area. In this

case a static MM estimator, which assumes there is a single operating mode

throughout the entire process, can be suitably employed to address the con-

sidered estimation problem. Next, a brief summary of a centralised approach

to the static MM called Finite Element Static Multiple Model (FE-SMM) and

dynamic FE-IMM is shown, wherein the measurements of all sensors are col-

lected and jointly processed in the correction step of each mode-matched

filter. For further details on multiple-model filtering algorithms, the reader

is referred to [76].

A. Static case: FE-SMM

The FE-SMM algorithm runs a bank of v̄ FE Kalman filters matched to the

modes j in (5.27), for 1 ≤ j < v̄, or (5.28) for j = v̄. Each filter updates

the state estimate, covariance and mode probability relative to mode j by

processing the entire set of gathered measurements yk,i, i ∈ S. Assume

available the state estimate x̂k−1|k−1, the covariance Pk−1|k−1, and the mode

probabilities µjk−1 at time step k − 1, then the estimator recursion is the

following.

1. Mode-matched filtering: a mode-matched Kalman filter for each j ∈
{1, ..., v̄} carries out the prediction and correction steps, processing the

entire set of gathered measurements yk,i, i ∈ S. The bank of filters pro-

duces mode-conditioned state estimates x̂jk|k and covariances Pj
k|k for each

mode. In addition, assuming Gaussian noises, the mode likelihoods are

evaluated as follows

Λjk = N (ζjk; 0;Sj
k), j = 1, ..., v̄ (5.29)
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where ζjk
4
= yjk −Cx̂jk|k−1 is the innovation at time k of mode j, and Sj

k

the associated covariance.

2. Mode probability update: mode probabilities are updated by means of

the mode likelihoods as follows

µjk =
1

c
Λjk µ

j
k−1 (5.30)

where c =
∑v̄
i=1 Λik µ

i
k−1 is the normalization constant.

Once initialised, mode-matched filters run independently with no interac-

tion. At the end of each cycle, the mode with maximum probability will be

considered as the operating one. As a consequence, the associated mode-

conditioned estimate will be directly used for field and source intensity es-

timation. Further, exploiting the structure of the FE approximation, the

source location can be estimated as a convex combination of the position of

the vertices of the element Ej matched to the estimated operating mode, i.e.

p̂0 =
∑

i∈Vj
ω̂i pi

ω̂i =
η̂ik
ûk
, i ∈ Vj , ûk =

∑

i∈Vj
η̂ik

(5.31)

B. Dynamic case: FE-IMM

The idea is to run an IMM estimator for the augmented system (5.27) with

mode-to-mode transitions modelled by means of a homogeneous Markov

chain with known constant transition probabilities

πij = prob (νk = i | νk−1 = j) , i, j ∈ {1, 2, ..., v̄} (5.32)

where νk represents the modal state (i.e. the mode in operation) at time k.

Differently from the static MM algorithm, at the beginning of each sampling

interval, the v̄ filters interact in a mixing step which produces the so-called

mixed initial conditions, i.e. different combinations of the previous model-

conditioned estimates and associated covariances. It must also be noted

that, since the source-free mode v̄ has a different (lower) state dimension

with respect to modes j 6= v̄, the state estimate and covariance of the former

must be padded with zeros in order to match the higher dimension of the

latter during the mixing step. Hence the recursion of the dynamic estimator

is the following.
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1. Calculation of the mixing probabilities: in order to calculate the

mixed initial conditions, the mixing probabilities are first updated as fol-

lows

µ
i|j
k−1|k−1

4
=

πji µ
i
k−1

v̄∑

`=1

πj` µ
`
k−1

(5.33)

2. Mixing: the mixed state estimates and covariances for modes j 6= v̄, are

computed as follows

x̂0j
k−1|k−1 =

v∑

i=1

x̂ik−1|k−1µ
i|j
k−1|k−1 + x̂v̄k−1|k−1µ

v̄|j
k−1|k−1

P0j
k−1|k−1 =

v∑

i=1

µ
i|j
k−1|k−1

[
Pi
k−1|k−1 + x̃ij(x̃ij)T

]
+

+ µ
v̄|j
k−1|k−1

[
Pv̄
k−1|k−1 + x̃v̄j(x̃v̄j)T

]
(5.34)

where x̂v̄k−1|k−1 = [(x̄v̄k−1|k−1)T 0T ]T and

Pv̄
k−1|k−1 =

[
P̄v̄
k−1|k−1 0

0 0

]

denote respectively the source-free model-conditioned augmented state

estimate and covariance at time step k − 1. Note that the state estimate

x̄v̄k−1|k−1 of mode v̄ has been simply augmented assuming a zero-intensity

source. Furthermore, x̃ij in (5.34) is the so called spread of the means

x̃ij = x̂ik−1|k−1−x̂0j
k−1|k−1. Mixed initial conditions for the no-source filter

are computed by extracting from the mode-conditioned state estimates

x̂ik−1|k−1 and covariances Pi
k−1|k−1, i 6= v̄, the lower dimensional x̄ik−1|k−1

and P̄i
k−1|k−1 corresponding to the original state. Then, the mixing is

computed as above

x̄0v̄
k−1|k−1 =

v̄∑

i=1

x̄ik−1|k−1µ
i|v̄
k−1|k−1

P̄0v̄
k−1|k−1 =

v̄∑

i=1

µ
i|v̄
k−1|k−1

[
P̄i
k−1|k−1 + x̃iv̄(x̃iv̄)T

] (5.35)

3. Mode-matched filtering: this step is identical to the one discussed

above for the static MM algorithm.
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4. Mode probability update: assuming that mode transitions are modelled

by (5.32), the mode probabilities are evaluated as follows

µjk =
1

c1
Λjk

v̄∑

i=1

πji µ
i
k−1 (5.36)

where c1 =
∑v̄
j=1 Λjk

∑v̄
i=1 πji µ

i
k−1 is the normalization constant.

It is worth mentioning that the proposed source estimator uses v+1 Kalman

filters, where v is the number of elements of the FE mesh. More precisely, v

out of the v+ 1 Kalman filters have an (n+ d+ 1)-dimensional state, where

n is the number of vertices of the FE grid and d ∈ {1, 2, 3} the dimension

of the domain of interest, while the remaining Kalman filter associated to

the no-source mode has n-dimensional state. Since v = O(n), d � n and

|S| � n, each Kalman filter has O(n3) complexity, and the overall compu-

tational complexity is O(n4). Since modern computers are characterized by

computing power in the order of Gigaflops, problems with hundreds or thou-

sands of state variables can be handled, depending on the required sampling

rate. It is also worth pointing out that the modal Kalman filters can be run

in a fully parallel fashion, being mindful, however, that the IMM mixing step

requires an exchange of information between the bank of filters.

5.6 Numerical examples

The proposed FE-IMM, described in Section 5.5, is validated via simulations.

Consider a scenario concerning a moving source estimation for a diffusion

process governed by the 2D case of (5.1) with

L(x) = −λ
(
∂2x/∂ξ2 + ∂2x/∂η2

)

and mixed boundary conditions (see Section 2.6)

∂x/∂n + β1x = g1 on ∂Ω1 (5.37)

∂x/∂n = 0 on ∂Ω2 (5.38)

This model describes, for instance, transient contaminant transport in water

bodies. Parameters β1 = ν
λ and g1 = ν

λ xe are such that (5.37) describes an

outward/inward diffusive flux across ∂Ω1 (boundary 10 in Fig.5.1), propor-

tional to the concentration difference x − xe between internal and external
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environments (external concentration xe = 0 is assumed known, ν = 1). The

homogeneous Neumann boundary condition (5.38) assumes there is no flux

across ∂Ω2, i.e. it is considered impermeable to the contaminant. Further,

(5.1) implicitly assumes λ is constant, here taken as λ = 0.1. A network

of 6 sensors is randomly deployed inside the spatial 2D domain Ω to sam-

ple the concentration field of interest, with sampling interval Ts = 1 [s] and

standard deviation of measurement noise σv = 0.005. As shown in Fig. 5.1,

a triangular mesh (116 nodes, 196 elements) is generated over Ω for the

finite-dimensional approximation of the monitored field. As true initial field

condition, we consider x0 = 0, whereas the estimator starts from x̂1|0 = 10 1

with covariance P1|0 = 1002 I. Moreover, the source intensity estimate is ini-

tialised as û1|0 = 10, with associated initial covariance matrix Pu
1|0 = 1002 I,

while the true average intensity of the source is 30. The standard deviation

of the process noise for the simulator is set as σw = 1.5, whereas for the MM

filters σ̂w = 5. The variance of the disturbance input is set to σ2
ζ = 0.04. All

simulation results are averaged over 100 Monte Carlo trials.
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Figure 5.1: Static case: fixed source in 1. Dynamic case: source moves from

1 to 4 in an area monitored by 6 sensors.
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Figure 5.2: Simulation results in the case of static source.
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Figure 5.3: Simulation results in the case of dynamic source.

5.6.1 Static source: FE-SMM

In the first scenario, no source is active when the 6 sensing devices start the

monitoring activity. After 100 [s] a fixed source located in p0 = [−0.296,−0.0237]
T

(location 1 in Fig. 5.1) activates. The total simulation time is 300 [s] (300

samples), and the standard deviation of the intensity increment ζk is chosen

as σζ = 0.02 for the simulator and σ̂ζ = 1 for the filters. Simulation results
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Figure 5.4: Dynamic case: true (uk) and estimated (ûk) source intensity

(solid lines), and true and estimated (η̂ik, i ∈ Vj) intensity components (dot-

ted lines).

relative to a static source are shown in Fig. 5.2.

5.6.2 Dynamic source: FE-IMM

In the second scenario the source, activated at time 100 [s], is moving along

the path 1 → 2 → 3 → 4 (see Fig. 5.1), sojourning 100 time steps in each

intermediate location, before turning off at time 500. From 500 to 600 the

simulation continues with no source. Jump probabilities are πii = 0.85∀i =

1, ..., v̄, πiv̄ = 0.05, i = 1, ..., v, while the remaining 0.1 probability is equally

distributed among all elements Ej adjacent to Ei. The Root Mean Square

Errors (RMSE) relative to the source position, intensity and source-induced

field, are reported, as performance indices, in Fig. 5.3. These are obtained

via comparison of the estimated quantities with a simulated system (ground

truth), which implements a finer mesh (427 nodes, 784 elements) and runs

at a higher sampling frequency of 10Hz, in order to take into account model

uncertainty. Results show that both the estimators succeed in localizing

the unknown source (Fig. 5.3a) and estimating the corresponding intensity

(Fig. 5.3b) in a very short time and with remarkable accuracy. The field

estimation error (Fig. 5.3c) presents visible peaks in correspondence of either

source activation or change of position, but it promptly stabilizes once the

input has been detected. Fig. 5.4 displays, for the maximum probability
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element Ej , the estimates ûk =
∑
i∈Vj η̂

i
k and η̂ik = ω̂i ûk from which it is

possible to obtain via (5.31) the estimate of the source location.

5.7 Conclusions

In this chapter, the problem of detecting a diffusive point source and jointly

estimating its location, intensity and induced field from pointwise-in-time-

and-space field measurements of sensors deployed over the monitored area,

has been addressed. This has been made possible by combining the finite-

element method for discretising in space the diffusion dynamics and the

multiple-model Kalman filtering approach.
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Chapter 6

Dynamic field estimation over

binary sensor networks

6.1 Introduction

In monitoring applications wireless sensor networks (WSNs) must usually

operate with a large number of geographically distributed devices, charac-

terized by limited power as well as limited communication and computational

resources. As reported in [77], simple, inexpensive devices deployed in large

numbers are likely to be the cutting-edge technology for WSNs, as it is not

practical to rely on sophisticated sensors with large power supply and com-

munication demands. Motivated by the challenges that the progress in WSN

technology will pose, the aim of this chapter is to investigate how to per-

form real-time dynamic field estimation using minimum-cost binary sensor

networks, which convey a minimal amount of information.

Binary sensors, whose output just indicates whether the noisy measure-

ment of the sensed variable (analog measurement) exceeds or not a given

threshold, have increasingly been employed in monitoring and control ap-

plications [78]- [79]. The idea is that by a multitude of low-cost and low-

resolution sensing devices it is possible to achieve the same estimation ac-

curacy that a few (possibly a single one) expensive high-resolution sensors

could provide, with significant practical benefits in terms of ease of sensor de-

ployment and minimization of communication requirements. The fact that

a binary (threshold) measurement just conveys a minimal amount (i.e. a

single bit) of information, while implying communication bandwidth savings

113
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and consequently greater energy efficiency, makes of paramount importance

to fully exploit the little available information by means of smart estimation

algorithms. In this respect, some work has recently addressed system iden-

tification [78]- [80], parameter [81]- [82] or state estimation [83]- [79] with

binary measurements by following either a deterministic [78]- [80], [83]- [84]

or a probabilistic [81]- [82], [85]- [79] approach.

In a deterministic context, the available information is essentially con-

centrated at the sampling instants in which some binary measurement signal

has switched value [83, 86]. As shown in [86], some additional information

can be exploited in the other (non switching) sampling instants by penaliz-

ing values of the estimated quantity such that the corresponding predicted

measurement is on the opposite side, with respect to a binary sensor read-

ing, far away from the threshold. Nevertheless, it is clear that there is no or

very little information available for estimation purposes whenever no or very

few binary sensor switchings occur. Hence, a possible way to achieve high

estimation accuracy is to have many binary sensors measuring the same vari-

able with different thresholds as this would clearly increase the number of

switchings, actually emulating, when the number of sensors tends to infinity,

the availability of a single continuous-valued (analog) measurement.

Conversely, following a probabilistic approach, binary sensor readings

could be exploited to infer information about the probability distribution of

the variable of interest. To clarify this point, let us assume that a very large

number of binary sensors of the same type (i.e. measuring the same variable

with the same threshold) be available and the distribution of their measure-

ment noise (e.g. Gaussian with zero mean and given standard deviation)

be known. Then, thanks to the numerosity of measurements, the relative

frequency of 1 (or 0) values occurring in the sensor readings could be con-

sidered as a reasonable estimate of the probability that the sensed variable

is above (or below) the threshold and this, in turn, exploiting the knowledge

of the measurement noise distribution allows to extract information about

the location of the value of the sensed variable with respect to the thresh-

old. If, for example, it is found that the binary measurement is equal to 1

for 70% of the sensors and Gaussian measurement noise is hypothesized, it

turns out that the expected measurement of the sensed variable is above the

threshold of an amount equal to 0.525 times the standard deviation of the

measurement noise. Notice that if the sensors are noiseless, they all provide

either 0 or 1 output and, paradoxically, in this case minimal information, i.e.
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that the sensed variable takes values in a semi-infinite interval (either below

or above the threshold), is extracted from the set of binary measurements.

The above arguments suggest that, adopting a probabilistic approach to es-

timation using binary measurements, the presence of measurement noise can

be a helpful source of information. In other words, it can be said that noise-

aided procedures can be devised for estimation with binary measurements

by exploiting the fact that the measurement noise randomly shifts the ana-

log measurement thus making possible to infer statistical information on the

sensed variable.

Relying on the above stated noise-aided paradigm, this chapter presents a

novel approach to recursive estimation of the state of a discrete-time dynam-

ical system given binary measurements. The proposed approach is based on

a moving-horizon (MH) approximation of the Maximum A-posteriori Prob-

ability (MAP) estimation and extends previous work [81]- [87] concerning

parameter estimation to recursive state estimation. A further contribution

is to show that for a linear system the optimization problem arising from the

MH-MAP formulation turns out to be convex and, hence, practically feasible

for real-time implementation. All the results of this chapter are presented

in [88].

The rest of the chapter is organized as follows. Section 6.2 introduces the

MAP problem formulation of state estimation with binary measurements.

Section 6.3 presents a MH approximation of MAP estimation, referred to

as MH-MAP algorithm, and analyzes the properties of the resulting opti-

mization problem. Section 6.4 discusses a possible application of the pro-

posed approach to the dynamic estimation of a diffusion field from binary

pointwise-in-space-and-time field measurements. Section 6.5 presents simu-

lation results relative to the dynamic field estimation case-study.

6.2 MAP state estimation with binary sensors

The following notation will be used throughout the chapter: col(·) denotes

the matrix obtained by stacking its arguments one on top of the other;

diag(m1, . . . ,mq) denotes the diagonal matrix with diagonal entriesm1, . . . ,mq;

0n, 1n indicate the n−dimensional vectors, respectively, with all zero and

unit entries.

Let us consider the problem of recursively estimating the state of the
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discrete-time nonlinear dynamical system

xt+1 = f(xt, ut) + wt (6.1)

zit = hi(xt) + vit, i = 1, . . . , l (6.2)

from a set of measurements provided by binary sensors

yit = gi(zit) =

{
1, if zit ≥ τ i
0, if zit < τ i

(6.3)

where xt ∈ Rn is the state to be estimated, ut ∈ Rm is a known input, and

τ i is the threshold of the i−th binary sensor. For the sake of simplicity, we

define zt = col
(
zit
)l
i=1
∈ Rl and yt = col

(
yit
)l
i=1
∈ Rl . The vector wt ∈ Rn

is an additive disturbance affecting the system dynamics which accounts for

uncertainties in the mathematical model, while vt = col
(
vit
)l
i=1
∈ Rl is the

measurement noise vector.

Let N (µ,Σ) denote as usual the normal distribution with mean µ and

variance Σ. The statistical behaviour of the system is characterized by

x0 ∼ N (x0, P
−1), wt ∼ N (0, Q−1), vt ∼ N (0, R) (6.4)

where: R = diag(r1, . . . , rp); E[wjw
′
k] = 0 and E[vjv

′
k] = 0 if j 6= k;

E[wjv
′
k] = 0, E[wjx

′
0] = 0, E[vjx

′
0] = 0 for any j, k. Notice from (6.2)-

(6.3) that sensor i produces a binary measurements yit ∈ {0, 1} depending

on whether the noisy system output zit is below or above the threshold τ i.

According to the available probabilistic description (6.4), the problem of

estimating the state of system (6.1) under the binary measurement model

(6.2)-(6.3) is formulated hereafter in a Bayesian framework by resorting to a

maximum a posteriori probability (MAP) criterion. In the remainder of this

section, as a preliminary step, the full-information MAP state estimation

problem is formulated.

To this end, notice that each binary measurement yit provides intrinsically

relevant information on the state xt which can be taken into account by

means of the a posteriori probabilities p(yit|xt). In particular, the binary

measurement yit is a Bernoulli random variable such that, for any binary

sensor i and any time instant t, the a posteriori probability p(yit|xt) is given

by

p(yit|xt) = p(yit = 1|xt)y
i
t p(yit = 0|xt)1−yit (6.5)

where

p(yit = 1|xt) = F i(τ i − hi(xt)) (6.6)
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and p(yit = 0|xt) = 1 − p(yit = 1|xt) , Φi(τ i − hi(xt)). The function

F i(τ i−hi(xt)) is the complementary cumulative distribution function (CDF)

of the random variable τ i − hi(xt). Since vit ∼ N (0, ri), the conditional

probability p(yit = 1|xt) = F i(τ i − hi(xt)) can be written in terms of the

Q-function as follows

F i(τ i − hi(xt)) =
1√

2πri

∫ ∞

τ i−hi(xt)
e−

u2

2ri du = Q

(
τ i − hi(xt)√

ri

)
. (6.7)

Let us now denote by Yt = col(y0, . . . , yt) the vector of all binary mea-

surements collected up to time t and by Xt , col(x0, . . . , xt) the vector of

the state trajectory. Further, let us denote by X̂t|t , col(x̂0|t, . . . , x̂t|t) the

estimates of Xt to be made at any stage t. Then, at each time instant t, given

the a posteriori probability p(XN |YN ), the estimate of the state trajectory

can be obtained by solving the following MAP estimation problem:

X̂t|t = arg max
Xt

p(Xt|Yt) = arg min
Xt
− ln p(Xt|Yt). (6.8)

From the Bayes rule

p(Xt|Yt) ∝ p(Yt|Xt) p(Xt), (6.9)

where

p(Xt) =

t−1∏

k=0

p(xt−k|xt−k−1, . . . , x0) p(x0)

=

t−1∏

k=0

p(xt−k|xt−k−1) p(x0).

(6.10)

Notice that in the latter equation we have considered the Markov property

for the dynamical system state. As x0 and wt are normally distributed

vectors, we have

p(x0) ∝ e− 1
2‖x0−x0‖2P (6.11)

p(xk+1|xk) ∝ e− 1
2‖xk+1−f(xk,uk)‖2Q . (6.12)

Moreover, the likelihood function p(Yt|Xt) of the binary measurement
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vector Yt can be written as

p(Yt|Xt) =

t∏

k=0

p(yk|xk) =

t∏

k=0

l∏

i=1

p(yik|xk)

=

t∏

k=0

l∏

i=1

F i(τ i − hi(xk))y
i
k Φi(τ i − hi(xk))1−yik

(6.13)

where in the latter equality we have exploited the statistical independence

of the binary sensors. Accordingly, the log-likelihood is

ln p(Yt|Xt) =

t∑

k=0

l∑

i=1

[
yik lnF i(τ i − hi(xk))

+(1− yik) ln Φi(τ i − hi(xk))
]
,

(6.14)

and the cost function − ln p(Xt|Yt) = − ln p(Yt|Xt) − ln p(Xt) to be mini-

mized in the MAP estimation problem (6.8) turns out to be, up to additive

constant terms,

Jt(Xt) = ‖x0 − x0‖2P +

t∑

k=0

‖xk+1 − f(xk, uk)‖2Q

−
t∑

k=0

l∑

i=1

[
yik lnF i(τ i − hi(xk)) + (1− yik) ln Φi(τ i − hi(xk))

]
.

(6.15)

Unfortunately, a closed-form expression for the global minimum of (6.15)

does not exist and, hence, the optimal MAP estimate X̂t|t has to be de-

termined by resorting to some numerical optimization routine. With this

respect, the main drawback is that the number of optimization variables

grows linearly with time, since the vector Xt has size (t+ 1)n. As a conse-

quence, as t grows the solution of the full information MAP state estimation

problem (6.8) becomes eventually unfeasible, and some approximation has

to be introduced.

6.3 Moving-horizon approximation

In this section, an approximate solution to the MAP state estimation prob-

lem is proposed by resorting to the MHE approach [89]- [90]. Accordingly,

by defining a sliding window Wt = {t − N, t − N + 1, . . . , t}, the goal is to
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find an estimate of the partial state trajectory Xt−N :t , col(xt−N , . . . , xt)
by using the information available in Wt. Then, in place of the full infor-

mation cost Jt(Xt), at each time instant t the minimization of the following

moving-horizon cost is addressed:

JMH
t (Xt−N :t) = Γt−N (xt−N ) +

t∑

k=t−N
‖xk+1 − f(xk, uk)‖2Q

−
t∑

k=t−N

l∑

i=1

[
yik lnF i(τ i − hi(xk)) + (1− yik) ln Φi(τ i − hi(xk))

]
(6.16)

where the non-negative initial penalty function Γt−N (xt−N ), known in the

MHE literature as arrival cost [91, 92], is introduced so as to summarize

the past data y0, . . . , yt−N−1 not explicitly accounted for in the objective

function.

As a matter of fact, the form of the arrival cost plays an important role

in the behavior and performance of the overall estimation scheme. While in

principle Γt−N (xt−N ) could be chosen so that minimization of (6.16) yields

the same estimate that would be obtained by minimizing (6.15), an algebraic

expression for such a true arrival cost seldom exists, even when the sensors

provide continuous (non-binary) measurements [91]. Hence, some approx-

imation must be used. With this respect, a common choice [92, 93], also

followed in the present work, consists of assigning to the arrival cost a fixed

structure penalizing the distance of the state xt−N at the beginning of the

sliding window from some prediction x̄t−N computed at the previous time

instant, thus making the estimation scheme recursive. A natural choice is

then a quadratic arrival cost of the form

Γt−N (xt−N ) = ‖xt−N − x̄t−N‖2Ψ , (6.17)

which, from the Bayesian point of view, corresponds to approximating the

PDF of the state xt−N conditioned to all the measurements collected up to

time t − 1 with a Gaussian having mean x̄t−N and covariance Ψ−1. As for

the choice of the weight matrix Ψ, in the case of continuous measurements

it has been shown that stability of the estimation error dynamics can be

ensured provided that Ψ is not too large (so as to avoid an overconfidence

on the available estimates) [92, 93]. Recently [86], similar results have been

proven to hold also in the case of binary sensors in a deterministic context.

In practice, Ψ can be seen as a design parameter which has to be tuned by
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pursuing a suitable tradeoff between such stability considerations and the

necessity of not neglecting the already available information (since in the

limit for Ψ going to zero the approach becomes a finite memory one).

Summing up, at any stage t = N,N + 1, . . ., the following problem has

to be solved.

Problem Et: Given the prediction x̄t−N , the input sequence {ut−N , . . . ,
ut−1}, the measurement sequences {yit−N , . . . , yit, i = 1, . . . , l}, find the op-

timal estimates x̂t−N |t, . . . , x̂t|t that minimize the cost function (6.16) with

arrival cost (6.17).

Concerning the propagation of the estimation procedure from Problem

Et−1 to Problem Et, the prediction x̄t−N is set equal to the value of the

estimate of xt−N made at time instant t− 1, i.e., x̄t−N = x̂t−N |t−1. Clearly,

the recursion is initialized with the a priori expected value x̄0 of the initial

state vector.

In general, solving Problem Et entails the solution of a non-trivial opti-

mization problem. However, when both equations (6.1) and (6.2) are linear,

the resulting optimization problem turns out to be convex so that standard

optimization routines can be used in order to find the global minimum. To

see this, let us consider the following assumption.

A1 The functions f(·) and hi(·), i = 1, . . . , l, are linear, i.e., f(xt, ut) =

Axt +But and hi(xt) = Cixt, i = 1, . . . , l, where A, B, Ci are constant

matrices of suitable dimensions.

Proposition 2. If assumption A1 holds, the CDF Φi(τ i−Cixt) and its com-

plementary function F i(τ i−Cixt) are log-concave. Hence, the cost function

(6.16) with arrival cost (6.17) is convex.

�

Proof: Under assumption A1, the cost function (6.16) is convex if and only

if F i(τ i − Cixt) and Φi(τ i − Cixt) are log-concave functions, ∀i = 1, . . . , p.

A function f : Rn → R is log-concave if f(x) > 0 for all x in its domain and

ln f(x) is concave [94], namely

∇2ln f(x) =
1

f2(x)

[
∂2f(x)

∂x2
f(x)−

(
∂f(x)

∂x

)′(
∂f(x)

∂x

)]
< 0. (6.18)
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Let us now consider the CDF Φi(τ i−Cixt) and its complementary function

F i(τ i−Cixt), that are positive functions for all dit , τ
i−Cixt, i = 1, . . . , l.

From the fundamental theorem of calculus, namely ∂
∂x

(∫ a(x)

b(x)
f(x)dx

)
=

f(a(x))∂a(x)
∂x − f(b(x))∂b(x)

∂x where a(x) and b(x) are arbitrary functions of

x, the first and the second derivatives of the function F i(τ i − Cixt) with

respect to xt are, respectively, equal to

∂F i(τ i − Cixt)
∂xt

=
Ci√
2πri

e−
(τi−Cixt)2

2ri (6.19)

and
∂2F i(τ i − Cixt)

∂x2
t

=
(Ci)′Ci

ri
√

2πri
(τ i − Cixt)e−

(τi−Cixt)2

2ri . (6.20)

If τ i − Cixt ≤ 0, then ∂2F i(τ i−Cixt)
∂x2
t

≤ 0. Hence ∂2F i

∂x2 F
i ≤ 0 and,

from (6.18), it follows that the Q-function F i is log-concave. Conversely, if

τ i − Cixt > 0, the log-concavity of F i depends on the sign of the term

∂2F i

∂x2 F
i −
(
∂F i

∂x

)′ (
∂F i

∂x

)
=

(Ci)′Ci

2πri e−
(τi−Cixt)2

2ri

[
τ i−Cixt

ri

(∫ ∞

τ i−Cixt
e−

u2

2ri du

)
− e−

(τi−Cixt)2

2ri

]
.

From the convexity properties of the function f(x) = x2/2, it can be easily

verified for any variables s, k that s2/2 ≥ −k2/2 + sk, and hence e−s
2/2 ≤

e−sk+k2/2 [94]. Then, if k > 0, it holds that

∫ ∞

k

e−
s2

2 ds ≤
∫ ∞

k

e−sk+ k2

2 ds =
e−

k2

2

k
.

Since τ i −Cixt > 0, with a simple change of variable, it can be stated that

τ i − Cixt
ri

(∫ ∞

τ i−Cixt
e−

u2

2ri du

)
≤ e−

(τi−Cixt)2

2ri , (6.21)

proving, as a consequence, the log-concavity of the Q-function F i(τ i−Cixt).
By using the complement rule, the cumulative distribution function can

be written as Φi(τ i − Cixt) = 1 − F i(τ i − Cixt) ≥ 0 and ∂2Φi(τ i−Cixt)
∂x2
t

=

−∂
2F i(τ i−Cixt)

∂x2
t

. If τ i − Cixt > 0, then ∂2Φi

∂x2 Φi < 0 such that Φi is log-

concave. In the remaining case, i.e. τ i − Cixt ≤ 0, noting that

Φi =
1√

2πri

∫ τ i−Ci(xt)

−∞
e−

u2

2ri du =
1√

2πri

∫ ∞

−(τ i−Cixt)
e−

u2

2ri du
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it can be observed that the sign of the term

∂2Φi

∂x2 Φi −
(
∂Φi

∂x

)′ (
∂Φi

∂x

)
= (Ci)′Ci

2πri e−
(τi−Cixt)2

2ri

×
[
−(τ i−Cixt)

ri

(∫ ∞

−(τ i−Cixt)
e−

u2

2ri du

)
− e−

(τi−Cixt)2

2ri

]

is negative, thus proving the log-concavity of the CDF Φi(τ i−Cixt) and the

convexity of the whole cost function.

�

Remark 5. Under assumption A1, the convexity of the cost function (6.16)

is guaranteed also in the more general case in which the statistical behaviour

of the random variables x0, wt, vt is described by logarithmically concave

distribution functions. Indeed, if a PDF is log-concave, also its cumulative

distribution function is log-concave; hence the contribution related to the

binary measurements in (6.16) turns out to be convex.

In the next section we will focus on the case of a discrete-time linear

system, in particular considering a diffusion process governed by a partial

differential equation (PDE) and spatially discretized by means of the finite

element method (FEM).

6.4 Dynamic field estimation with binary sen-

sors

In this section, we consider the problem of reconstructing a two-dimensional

diffusion field, sampled with a network of binary sensors arbitrarily deployed

over the spatial domain of interest Ω. The diffusion process is governed by

the following parabolic PDE:

∂c

∂t
− λ∇2c = 0 in Ω (6.22)

which models various physical phenomena such as the spread of a pollutant

in a fluid. In this case, c(ξ, η, t) represents the space-time dependent sub-

stance concentration, λ denotes the constant diffusivity of the medium, and

∇2 = ∂2/∂ξ2 + ∂2/∂η2 is the Laplace operator, (ξ, η) ∈ Ω being the 2D spa-

tial variables. Furthermore, let us assume mixed boundary conditions (see
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Section 2.6), i.e. an inhomogeneous Dirichlet condition

c = ψ on ∂ΩD, (6.23)

which specifies a constant-in-time value of concentration on the boundary

∂ΩD, and a homogeneous Neumann condition on ∂ΩN = ∂Ω\∂ΩD, assumed

impermeable to the contaminant, so that

∂c/∂υ = 0 on ∂ΩN , (6.24)

where υ is the outward pointing unit normal vector of ∂ΩN .

The objective is to estimate the values of the dynamic field of interest

c(ξ, η, t), given the binary measurements (6.3). The PDE system (6.22)-

(6.24) is simulated with a mesh of finite elements over Ω via the finite-element

(FE) approximation described in Chapter 3. Specifically, the domain Ω is

subdivided into a suitable set of non overlapping regions, or elements, and

a suitable set of basis functions φj(ξ, η), j = 1, . . . , nφ, is defined on such

elements. In the specific case under investigation, the elements are triangles

in 2D and define a FE mesh with vertices (ξj , ηj) ∈ Ω, j = 1, . . . , nφ. In

order to account for the mixed boundary conditions, the basis functions are

supposed to be ordered so that the first n correspond to vertices of the

mesh which lie either in the interior of Ω or on ∂ΩN , while the last nφ − n
correspond to the vertices lying on ∂ΩD.

Accordingly, the unknown function c(ξ, η, t) is approximated as

c(ξ, η, t) ≈
n∑

j=1

φj(ξ, η) cj(t) +

nφ∑

j=n+1

φj(ξ, η)ψj (6.25)

where cj(t) is the unknown expansion coefficient of the function c(ξ, η, t)

relative to time t and basis function φj(ξ, η), and ψj is the known expan-

sion coefficient of the function ψ(ξ, η) relative to the basis function φj(ξ, η).

Notice that the second summation in (6.25) is needed so as to impose the

inhomogeneous Dirichlet condition (6.23) on the boundary ∂ΩD.

The PDE (6.22) can be recast into the following integral form:
∫

Ω

∂c

∂t
ϕ dξdη − λ

∫

Ω

∇2c ϕ dξdη = 0 (6.26)

where ϕ(ξ, η) is a generic space-dependent weight function. By applying

Green’s identity, one obtains:
∫

Ω

∂c

∂t
ϕ dξdη + λ

∫

Ω

∇T c ∇ϕdξdη − λ
∫

∂Ω

∂c

∂υ
ϕ dξdη = 0 . (6.27)
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By choosing the test function ϕ equal to the selected basis functions and

exploiting the approximation (6.25), the Galerkin weighted residual method

is applied and the following equation is obtained

n∑

i=1

∫

Ω

φiφj dξdη ċi(t) + λ

n∑

i=1

∫

Ω

∇Tφi ∇φj dξdη ci(t)

+ λ

nφ∑

i=n+1

∫

Ω

∇Tφi ∇φj dξdη ψi = 0 (6.28)

for j = 1, . . . , n. Notice that in the latter equation the boundary integral of

equation (6.27) is omitted since it is equal to 0 thanks to the homogeneous

Neumann condition (6.24) on ∂ΩN and to the fact that, by construction, the

basis functions φj , j = 1, . . . , n, vanish on ∂ΩD.

By defining the state vector x = col(c1, . . . , cn) and the vector of bound-

ary conditions γ = col(ψn+1, . . . , ψnφ), equation (6.28) can be written in the

more compact form as

Mẋ(t) + Sx(t) + SDγ = 0

where S is the so-called stiffness matrix representing diffusion, M is the mass

matrix, and SD captures the physical interconnections among the vertices

affected by boundary condition (6.23) and the remaining nodes of the mesh.

By applying for example the implicit Euler method, the latter equation

can be discretized in time, thus obtaining the linear discrete-time model

xt+1 = Axt +B u+ wt (6.29)

where
A =

[
I + δt M−1S

]−1

B =
[
I + δt M−1S

]−1
M−1δt

u = −SD γ

δt is the time integration interval, and wt is the process disturbance taking

into account also the space-time discretization errors.

Notice that the linear system (6.29) has dimension n equal to the number

of vertices of the mesh not lying on ∂ΩD. The linear system (6.29) is assumed

to be monitored by a network of l threshold sensors. Each sensor, before

binary quantization is applied, directly measures the pointwise-in-time-and-

space concentration of the contaminant in a point of the spatial domain
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Ω. By exploiting (6.25), such a concentration can be written as a linear

combination of the concentrations on the grid points, so that the resulting

output function takes the form

zit = Cixt + vit, i = 1, . . . , l (6.30)

and assumption A1 is fulfilled.

6.5 Numerical example

In this section, we present the simulation results of the proposed approach

applied to the problem of state estimation of spatially distributed processes,

discussed in the previous section. We consider the simulated system (6.29)-

(6.30) with 1695 triangular elements, 915 vertices, λ = 0.01 [m2/s], fixed

integration step length δt = 1 [s], γ = 30 [g/m2], and initial condition

of the field vector x0 = 0n [g/m2]. The field of interest is defined over a

bounded 2D spatial domain Ω which covers an area of 7.44 [m2] (see Fig. 6.1),

with boundary condition (6.23) on the bottom edge and no-flux condition

(6.24) on the remaining portions of ∂Ω. Compared to the ground truth

Figure 6.1: Concentration field at time t = 100 [s] monitored by a random

network of 20 binary sensors (red ◦).

simulator, the proposed MH-MAP estimator implements a coarser mesh (see
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Figure 6.2: Mesh used by the MH-MAP estimator (152 elements, 97 nodes).

Fig. 6.2) of nφ = 97 vertices (n = 89), and runs at a slower sample rate

(0.1 [Hz]), so that model uncertainty is taken into account. The initial

condition of the estimated dynamic field is set to x0 = 5 · 1n [g/m2], the

moving window has size N = 5, and the weight matrices in (6.4) are chosen

as Ψ = 103 In and Q = 102 In. The true concentrations from (6.29) are first

corrupted with a Gaussian noise with variance ri, then binary observations

are obtained by applying a different threshold τ i for each sensor i of the

network. Note that, in order to receive informative binary measurements,

τ i, i = 1, ..., l, are generated as uniformly distributed random numbers in the

interval (0.05, 29.95), being (0, 30) the range of nominal concentration values

throughout each experiment. The duration of each simulation experiment is

fixed to 1200 [s] (120 samples).

Fig. 6.3 shows the performance of the novel MH-MAP state estimator

implemented in Matlab, in terms of Root Mean Square Error (RMSE) of the

estimated concentration field, i.e.:

RMSE(t) =




α∑

j=1

‖et,j‖2
α




1
2

, (6.31)

where ‖et,j‖ is the norm of the estimation error at time t in the j−th simu-

lation run, averaged over 304 sampling points (evenly spread within Ω) and
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Figure 6.3: RMSE in concentration of the MH-MAP state estimator as a

function of time, for a random network of 5 threshold sensors.

α = 100 independent Monte Carlo realizations. The estimation error is com-

puted at time t on the basis of the estimate x̂t−N |t. It can be observed
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Figure 6.4: RMSE in concentration as a function of the measurement noise

variance, for a fixed constellation of 20 binary sensors. It is shown here that

operating in a noisy environment turns out to be beneficial, for certain values

of ri, to the state estimation problem.

that the proposed estimator successfully estimates the dynamic field, even

when observed by a network of l = 5 randomly deployed binary sensors, with

ri = 0.25 [g/m2] for i = 1, ..., l. The effect of measurement noise on the mean
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Figure 6.5: RMSE of the concentration estimates as a function of the number

of sensors deployed over the monitoring area.

value of the RMSE can be seen in Fig. 6.4, in which it becomes apparent

how for certain values of ri, including an observation noise with higher vari-

ance, can actually improve the quality of the overall estimates. The results

in Fig. 6.4 numerically demonstrate the validity of the above stated noise-

aided paradigm in the recursive state estimation with binary measurements

and, thus, represent an interesting contribution of this work. Finally, Fig.

6.5 shows the evolution of the RMSE as a function of the number of binary

observations available at the fusion center.

6.6 Conclusions

State estimation with binary sensors has been formulated as a Moving Hori-

zon (MH) Maximum A posteriori Probability (MAP) optimization problem

and it has been shown how such a problem turns out to be convex in the

linear system case. Simulation results relative to a dynamic field estimation

case-study have exhibited the conjectured noise-aided feature of the pro-

posed estimator in that the estimation accuracy improves, starting from a

null measurement noise, until the variance of the latter achieves an optimal

value beyond which estimation performance decays.



Chapter 7

Dynamic field estimation in

adversarial environments

7.1 Introduction

The aim of this chapter is to address new challenges introduced in the envi-

ronment under consideration by the progress of the so-called Cyber-Physical

Systems (CPS). In particular, next-generation monitoring/control systems

of spatially distributed processes are typical examples of CPS, i.e. com-

plex systems integrating computation, networking capabilities and physical

processes. Due to their strategic importance in homeland security, situa-

tion awareness, environmental and industrial monitoring, etc. such systems

are nowadays subject to the potential threat of cyber-physical attacks. In-

deed, while advances in CPS technology will provide enhanced autonomy,

efficiency, seamless interoperability and cooperation, the tighter interaction

between cyber and physical realms is unavoidably introducing novel security

vulnerabilities, which make CPS subject to non-standard malicious threats.

Recent real-world attacks, such as the Maroochy Shire sewage spill where

a hacker caused the release of 800, 000 liters of untreated sewage into wa-

terways, the Stuxnet worm which targeted nuclear industry software and

equipment in Iran, and the lately reported massive power outage against

Ukrainian electric grid, have brought the attention of the engineering com-

munity towards the urgency of designing secure CPS. There exist a wide

range of cyber-physical attacks and a variety of approaches to handle them,

i.e. to detect the attack outbreak as well as to correctly estimate the system

129
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state even in presence of the attack.

Preliminary studies addressed the problems of attack detection/identifi-

cation, and proposed attack monitors for deterministic control systems [74].

In addition, active detection methods have been designed in order to reveal

stealthy attacks via manipulation of e.g. control inputs [95] and dynam-

ics [96]. In recent times, the problem of secure state estimation, i.e. ca-

pable of reconstructing the state even when the CPS of interest is under

attack, has gained considerable attention [97], [98]. Under the assumption

of linear systems subject to an unknown, but bounded, number of false-data

injection attacks, the problem for a noise-free system has been cast into an

`0−optimization problem, which can be relaxed as a more efficient convex

problem [99], and later adapted to systems with bounded noise [100]. Fur-

ther advances try to tackle the combinatorial complexity of the problem [101].

Lately, the most popular types of attack have been modeled based on adver-

sary’s resources and system knowledge [102], and resilient state estimation

has been also addressed for noisy systems under both data injection and

switching attacks [103].

This chapter specifically focuses on dynamic field estimation in adversar-

ial environments. A typical example of such an adversarial setting is the

problem of detecting and localizing an unknown malicious source (e.g. a

biochemical attack) inducing and/or altering the field to be monitored (the

similar problem in a non-malicious setup has been presented in Chapter 5).

In this specific case, the objective of secure estimation becomes the joint task

of detecting the presence of the source, localizing it, estimating its intensity,

and monitoring the induced field. A possible solution to the above problem

can be found by exploiting the approach presented in Section 5.5, i.e. by

modeling the intensity of the malicious source as an unknown input (model

(a) in Section 5.3). In the sequel it will be shown how the above source

attack can be modeled as a more general switching mode attack by which

the attacker can switch the currently operating mode of the CPS within a

finite set of possible attack modes. This can be achieved, for instance, by

altering the network’s topology in a power system through breaker control

signals [104]; the same type of attack has been also studied on water distribu-

tion systems [105], where the water outflow can be influenced via boundary

control actions.

In particular, this chapter aims to address the general problem of jointly

detecting a signal attack (e.g., the intensity of a malicious source) and esti-
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mating both the attack mode (e.g., the position of the source) and system

state (e.g., the source-induced field) from the available observations. The

overall problem is formulated in a stochastic random set Bayesian framework

by exploiting Bernoulli modeling for the signal attack presence/absence and

multiple models to account for the different attack modes. It is worth to

highlight that the adopted approach exhibits the following positive features:

1) can deal with nonlinear systems; 2) takes into account the presence of

disturbances and noise; 3) can encompass in a unique framework different

types of attacks (switching signal and mode attacks, extra packet injection,

packet substitution, etc.); 4) provides (discrete or continuous) probability

distributions of the attack existence, attack mode, attack signal and system

state which are very useful for taking decisions. Preliminary results on the

single-model case of this topic are presented in [106].

The rest of the chapter is organized as follows. Section 7.2 introduces the

considered attack models and provides the necessary background. Section 7.3

formulates and solves the joint attack detection and mode-state estimation

problem of interest in the Bayesian framework. Section 7.4 discusses the

Gaussian-mixture implementation of the joint attack detector and mode-

state estimator derived in Section 7.3. Then, Section 7.5 demonstrates the

effectiveness of the proposed approach via a simulation example concerning

a power network. Finally, Section 7.6 ends the chapter with concluding

remarks.

7.2 Problem formulation and preliminaries

7.2.1 System and attack model

Let the discrete-time cyber-physical system in adversarial environment be

modeled by

xk+1 =

{
f0
k (νk, xk) + wk, under no signal attack

f1
k (νk, xk, ak) + wk, under signal attack

(7.1)

where: k is the time index; νk ∈ M = {1, 2, ...,m} is the mode variable

in operation at time k; xk ∈ Rn is the state vector to be estimated; ak ∈
Rm, called attack vector, is an unknown input affecting the system only

when it is under attack; f0
k (νk, ·) and f1

k (νk, ·, ·) are known mode-matched

state transition functions that describe the system evolution under a specific
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mode νk, in the no signal attack and, respectively, signal attack cases; wk
is a random process disturbance, with probability density function (PDF)

pw(νk, ·), also affecting the system. For monitoring purposes, the state of

the above system is observed through the measurement model

yk =

{
h0
k(νk, xk) + vk, under no signal attack

h1
k(νk, xk, ak) + vk, under signal attack

(7.2)

where: h0
k(νk, ·) and h1

k(νk, ·, ·) are known mode-matched measurement func-

tions that refer to the no signal attack and, respectively, signal attack cases;

vk is a random measurement noise with PDF pv(νk, ·). It is assumed that

the measurement yk is actually delivered to the system monitor with proba-

bility pd ∈ (0, 1], where the non-unit probability might be due to a number

of reasons (e.g. temporary denial of service, packet loss, sensor inability to

detect or sense the system, etc.).

Jump Markov models (7.1)-(7.2) allow to describe cyber-physical systems

subject to two different types of switching attacks, as considered in [103]: (i)

switching mode attacks, and (ii) switching signal attacks. The former class

of attacks is capable of switching the ongoing mode of the system between

a finite set of possible models M, by e.g. altering the state transition of

the system (in [104] the topology of a power network). Moreover, a change

in the system mode might represent a modification of the set of corruptible

actuators/sensors, i.e. a change of the structure under which the signal at-

tack enters the system. In other words, switching mode attacks model every

possible cyber-physical adversary’s action causing a change of the functions

f0, f1 governing the system dynamics and/or of the functions h0, h1 describ-

ing the observation process. On the other hand, a signal attack (ii), modeled

in (7.1)-(7.2) via the attack vector ak, is a time-varying signal of arbitrary

magnitude and location injected into the system to corrupt sensor/actuator

data (also known as false-data injection attack), here modeled as an un-

known input. Specifically, as in [110] for unknown inputs, ak is treated as

a white stochastic process {ak}, independent of x0, {wk} and {vk}. This

means that ak and al are independent random variables for k 6= l, and ak is

independent of xk and yk−1. Such an assumption accounts for the fact that

ak may assume all possible values, being completely unknown (we consider

the most general model for signal attacks where any value can be injected

via the compromised actuators/sensors), and the knowledge of ak adds no

information on al, if k 6= l. At each time instant k, the signal attack can
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be present or not, according to the binary hypothesis 1 or 0, respectively, in

(7.1)-(7.2).

Besides the above switching attacks (i) and (ii), the proposed attack

model takes into account the presence of malicious extra packet injections,

already addressed in [107], [108], and [106]. This means that, in addition

to the system-originated measurement yk in (7.2), it is assumed that the

system monitor might receive from some cyber-attacker one or multiple extra

fake measurements indistinguishable (e.g. with same time stamp and sender

id) from the system-originated one. For the subsequent developments, it is

convenient to introduce the attack set at time k, Ak, which is either equal

to the empty set if the system is not under signal attack at time k or to the

singleton {ak} otherwise, i.e.

Ak =

{ ∅, if the system is not under signal attack

{ak}, otherwise.

Due to the possible presence of the extra packet injection attack, it is also

convenient to define the measurement set at time k

Zk = Yk ∪ Fk (7.3)

where

Yk =

{ ∅ with probability 1− pd
{yk} with probability pd

(7.4)

is the set of system-originated measurements and Fk the finite set of fake

measurements. It is worth mentioning that the above attack model could be

extended to include the case of packet substitution, see [106].

7.2.2 Multiple model approach

In order to handle switching attacks that can change the model in effect

of the cyber-physical system (7.1)-(7.2), single-model approaches to secure

state estimation, like the one proposed in [106], need to be accomodated for

switching systems. To this end, the idea is to rely on the Multiple Model

(MM) approach [76]. For state estimation problems in jump Markov systems

with known inputs, the MM framework provides, in theory, Bayes-optimal so-

lutions by running in parallel a bank of m mode-matched Bayesian filters. In

simple terms, each filter, at each time instant, provides the mode-conditioned

PDFs of the state given the observations, and recursively computes the modal
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probabilities for each mode νk. In this way, the MM approach can infer the

best model of the current system’s mode of operation as well as estimate

the state of the system, based on the mode estimate. The MM approach

commonly assumes that the true mode of the system switches according to

a (homogeneous) Markov chain with known transition probabilities

πji = prob (νk = i | νk−1 = j) , i, j ∈M (7.5)

where
∑m
i=1 πji = 1. This assumption leads to the so called Dynamic MM

estimator. A particular case of the aforementioned filter is the Static MM

estimator which conversely assumes a constant mode variable νk ∈ M, i.e.

νk = ν, and hence πji = 0 ∀j, i ∈ M with j 6= i. In the special case of

joint mode, state, and attack estimation in cyber-physical systems of the

form (7.1)-(7.2), the simultaneous presence of both the unknown mode and

input affecting the system poses new challenges. In particular, the signal

attack vector ak can be considered as either a mode-dependent vector with

possibly different dimension within distinct system modes, or a vector with

fixed dimension for each possible mode (as assumed in [103]). Furthermore,

two possible approaches can be undertaken for solving the above problem,

depending on the available knowledge of mode transitions. In this respect,

although in adversarial environments it is usually more realistic to assume

no prior knowledge of the mode transition model, and hence the Static MM

approach provides the most suitable tool, there also exist cases where a

Dynamic MM approach turns out to be preferable. A typical example of

such a case is the problem of detecting and localizing an unknown malicious

source which will be described next.

7.2.3 Malicious source estimation

Since the unknown location of the source corresponds to a specific mode of

the system, and the source intensity can be treated as an unknown signal

attack ak, the problem of malicious source estimation can be recast as a

joint mode, state, and attack estimation in jump Markov systems (7.1)-

(7.2). Notice that in this case, the attack vector ak (intensity) has fixed

dimension for each mode, and prior knowledge of the modal transitions can

be assumed (since at each time instant they depend on the current location

of the moving source, and hence modes corresponding to locations close to

this position will clearly have higher probability to become the active mode

of the system at the next step). This is the reason why in these types of
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problems a Dynamic MM approach is preferable to undertake with respect

to a static filtering.

Let us consider an advection-diffusion process described by a PDE of the

form (5.1), i.e.
∂x

∂t
− λ∇2x+ vT∇x = fa in Ω (7.6)

Here fa(p, t) represents the forcing term modeling a malicious point source

injected by an attacker within the monitored domain Ω as

fa(p, t) =

{
0, under no source attack

a(t) δ (p− pa(t)) , under source attack
(7.7)

The considered diffusive source is characterized by unknown intensity a(t)

and position pa(t) ∈ Ω. The aim is to detect the presence of the malicious

source and jointly estimate a(t), pa(t), x(p, t) given measurements

yk,i = hi (x (si, tk)) + vk,i (7.8)

The aformentioned problem of infinite dimension can be approximated, as

presented in Section 5.3, via the finite element method so as to obtain a

discrete-time model for the system under source attack of the form (6.29)

xk+1 = Axk +B(pa)ak + bk + wk (7.9)

Thus, the discrete-time CPS model (7.1) for dynamic field estimation under

source attack can be rewritten as

xk+1 =

{
Axk + bk + wk, under no source attack

Axk +B(pa)ak + bk + wk, under source attack
(7.10)

so that the same attack model discussed in Section 7.2.1 can be adopted. To

sum up, following the key idea of the source estimation approach in Section

5.5, it is possible to derive, under the assumption of a signal attack vector

ak ∈ Rm with fixed dimension, a Bayesian recursion based on the Dynamic

MM filtering.

Next, the general problem of joint signal attack detection and simulta-

neous mode–state estimation will be addressed. This amounts to jointly

estimating, at each time k, the mode νk modeling switching mode attacks,

the state xk, and the signal attack set Ak given the set of measurements

Zk 4= ∪ki=1Zi up to time k. Note that, differently from the general frame-

work where the two types of switching attack will be treated separately, the
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model of source attack considered in this section usually implies a combined

action of signal and mode attacks, i.e. the position of the switching malicious

source is not known a priori and hence its presence will directly correspond

to a source-induced field behavior that can follow multiple models.

7.2.4 Joint input and state estimation

In this section we review the formulation of the Joint Input and State Esti-

mation (JISE) problem [109], [110] in the Bayesian framework. To this end,

let us consider a system with direct feedthrough of the form
{
xk+1 = f(xk, uk) + wk
yk = h(xk, uk) + vk

(7.11)

where uk is the unknown input vector. The goal of stochastic Bayesian filter-

ing is to recursively estimate the time-varying posterior PDF of the unknown

variables conditioned on all the information available up to that time. Hence,

when the objective is the simultaneous input and state estimation, at each

time instant k, the estimates of uk and xk can be obtained by solving the

following problem.

JISE problem: For the system (7.11), given the measurement set yk =

{y1, y2, . . . , yk}, sequentially compute the joint conditional PDF p(uk, xk|yk)

from p(uk−1, xk−1|yk−1).

Assuming that the initial density p(u0, x0) is given, the solution can

be described as a two-step procedure of prediction and correction. Let

p(uk−1, xk−1|yk−1) denote the posterior PDF at k − 1. The prediction step

computes the conditional PDF p(xk|yk−1) via the Chapman-Kolmogorov

equation:

p(xk|yk−1) =

∫∫
p(xk|uk−1, xk−1)p(uk−1, xk−1|yk−1) duk−1dxk−1

(7.12)

Then, at time instant k, the observed output yk is available and can be

used to update p(xk|yk−1) and jointly estimate the conditional PDF of uk,

yk being the first measurement containing information about the unknown

signal. The correction step is then performed by applying the Bayes rule:

p(uk, xk|yk) =
p(yk|uk, xk) p(xk|yk−1) p(uk)

p(yk|yk−1)
(7.13)
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Note that in (7.13) the unknown input is treated as a white stochastic process

{uk}, independent of x0, {wk} and {vk}. This means that uk and ul are

independent random variables for k 6= l, and uk is independent of xk and

yk−1. With the derived Bayesian solution to JISE in the presence of direct

feedthrough, optimal (with respect to any criterion) point estimates of the

input and state can be obtained from this PDF, e.g. the Maximum A-

posteriori Probability (MAP) estimate.

7.2.5 Random set estimation

An RFS (Random Finite Set) X over X is a random variable taking values in

F(X), the collection of all finite subsets of X. The mathematical background

needed for Bayesian random set estimation can be found in [111]; here, the

basic concepts needed for the subsequent developments are briefly reviewed.

From a probabilistic viewpoint, an RFS X is completely characterized by

its set density f(X ), also called FISST (FInite Set STatistics) probability

density. In fact, given f(X ), the cardinality probability mass function p(n)

that X have n ≥ 0 elements and the joint PDFs f (x1, x2, . . . , xn|n) over Xn

given that X have n elements, are obtained as follows:

p(n) =

∫

Xn
f({x1, . . . , xn}) dx1 · · · dxn

f (x1, x2, . . . , xn|n) =
1

n!p(n)
f({x1, . . . , xn})

In order to measure probability over subsets of X or compute expectations of

random set variables, [111] introduced the notion of set integral for a generic

real-valued function g(X ) of an RFS X as

∫
g(X ) δX = g(∅) +

∞∑

n=1

1

n!

∫
g({x1, . . . , xn}) dx1 · · · dxn (7.14)

Two specific types of RFSs, i.e. Bernoulli and Poisson RFSs, will be consid-

ered in this work.

Bernoulli RFS

A Bernoulli RFS is a random set which can be either empty or, with some

probability r ∈ [0, 1], a singleton {x} distributed over X according to the
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PDF p(x). Accordingly, its set density is defined as follows:

f(X ) =

{
1− r, if X = ∅
r · p(x), if X = {x}

(7.15)

Poisson RFS

A Poisson RFS is a random finite set with Poisson-distributed cardinality,

i.e.

p(n) =
e−ξξn

n!
, n = 0, 1, 2, . . . (7.16)

and elements independently distributed over X according to a given spatial

density p(·). Accordingly, its set density is defined as follows:

f(X ) = e−ξ
∏

x∈X
ξ p(x). (7.17)

7.3 Bayesian random set filter for secure esti-

mation

Let the signal attack input at time k be modeled as a Bernoulli random

set Ak ∈ B(A), where B(A) = ∅ ∪ S(A) is a set of all finite subsets of the

attack probability space A ⊆ Rm, and S denotes the set of all singletons

(i.e., sets with cardinality 1) {a} such that a ∈ A. Further, let X ⊆ Rn

denote the Euclidean space for the system state vector. Then, a new state

variable (A, x), referred to as Hybrid Bernoulli Random Set (HBRS), which

incorporates the Bernoulli attack random set A and the random state vector

x can be defined (see [106]). The HBRS can be subsequently augmented in

order to include the hidden mode (or discrete state) in the new state variable

(A, x, ν), that we refer to as Multiple Model Hybrid Bernoulli Random Set

(MM-HBRS), which takes values in the hybrid space B(A) × X ×M. An

MM-HBRS is fully specified by the (signal attack) probability r of A being

a singleton, the mode-conditioned PDF p0(x, ν), and the mode-conditioned

joint PDF p1(a, x, ν), i.e.

p(A, x, ν) =

{
(1− r) p0(x, ν), if A = ∅
r · p1(a, x, ν), if A = {a}

(7.18)
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with integration over the new state space

m∑

i=1

µi
∫

F(B)×X
p(A, x|νk = i) δA dx (7.19)

where
∫

F(B)×X
p(A, x|νk = i) δA dx = (7.20)

∫
p(∅, x, νk = i) dx+

∫∫
p({a}, x, νk = i) da dx

and µi
4
= prob(νk = i|Z) is the mode probability of mode i, given the mea-

surement set Z. The set integration with respect to A is defined according

to (7.14) while the integration with respect to x is an ordinary one. Notice

that in (7.19) p(A, x, ν) integrates to one, since integration with respect to

A and x equals 1, p0(x) and p1(a, x) being conventional probability density

functions, and
∑m
i=1 µ

i = 1. Thus, (7.18) turns out to be a FISST probabil-

ity density for the MM-HBRS (A, x, ν), which will be referred to as multiple

model hybrid Bernoulli density throughout the rest of the chapter.

An MM-HBRS can be corrected and predicted in a recursive fashion so

as to form a novel Multiple Model Hybrid Bernoulli Filter (MM-HBF).

7.3.1 Measurement model and correction

Due to the possible presence of extra packet injection, whose attack model

has been introduced in Section 7.2.1, the measurement set defined in (7.3) is

given by the union of two independent random sets. As it is clear from (7.4),

Yk is a Bernoulli random set (with cardinality |Yk| at most 1) which de-

pends on whether the system-originated measurement yk is delivered or not.

Conversely, Fk is the random set of fake measurements that will be modeled

hereafter as a Poisson random set, such that the number of counterfeit mea-

surements is Poisson-distributed according to (7.16) and the FISST PDF of

fake-only measurements γ(Fk) is given by (7.17) with spatial distribution

κ(·) in place of p(·). For the measurement set (7.3), the aim is to find the

expression of the likelihood function λ(Zk|Ak, xk, νk). To this end, let us

first introduce the following FISST PDF for Ak = ∅:

η(Yk|∅, xk, νk) =

{
1− pd, if Yk = ∅
pd `(yk|xk, νk), if Yk = {yk}

(7.21)
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and for Ak = {ak}:

η(Yk|{ak}, xk, νk) =

{
1− pd, if Yk = ∅
pd `(yk|ak, xk, νk), if Yk = {yk}

. (7.22)

Then, using the convolution formula [111, p. 385], it follows that

λ(Zk|Ak, xk, νk) =
∑

Yk⊆Zk
η(Yk|Ak, xk, νk) γ(Zk \ Yk). (7.23)

Hence, the likelihood corresponding to Ak = ∅ is given by

λ(Zk|∅, xk, νk) = η(∅|∅, xk, νk) γ(Fk) (7.24)

+
∑

yk∈Zk
η({yk}|∅, xk, νk) γ(Zk \ {yk})

= γ(Fk)

[
1− pd + pd

∑

yk∈Zk

`(yk|xk, νk)

ξ κ(yk)

]

where (7.21) and (7.17) have been used, while for Ak = {ak} we have

λ(Zk|{ak}, xk, νk) = η(∅|{ak}, xk, νk) γ(Fk) (7.25)

+
∑

yk∈Zk
η({yk}|{ak}, xk, νk) γ(Zk \ {yk})

= γ(Fk)

[
1− pd + pd

∑

yk∈Zk

`(yk|ak, xk, νk)

ξ κ(yk)

]
.

Using the above measurement model, exact correction equations of the multiple-

model Bayesian random set filter for joint signal attack detection, mode and

state estimation in the case of extra packet injection attack are obtained as

follows.

Note that from now on the notation 〈α, β〉 =
∫
α(x)β(x)dx will be used

for the inner product of two functions.

Theorem 9. Assume that the prior density at time k is multiple model

hybrid Bernoulli of the form

p(Ak, xk, νk|Zk−1) =





(1− rk|k−1)p0
k|k−1(xk, νk), if Ak = ∅

rk|k−1 · p1
k|k−1(ak, xk, νk), if Ak = {ak}

.

(7.26)
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Then, given the measurement random set Zk defined in (7.3), also the pos-

terior density at time k turns out to be multiple model hybrid Bernoulli of

the form

p(Ak, xk, νk|Zk) =





(1− rk|k) p0
k|k(xk, νk), if Ak = ∅

rk|k · p1
k|k(ak, xk, νk), if Ak = {ak}

(7.27)

with parameters

rk|k =
1− pd (1− Γ1)

1− pd(1− Γ0 + rk|k−1Γ)
rk|k−1 (7.28)

p0
k|k(xk, νk) =

1− pd
[
1−

∑

yk∈Zk

`(yk|xk, νk)

ξ κ(yk)

]

1− pd (1− Γ0)
p0
k|k−1(xk, νk) (7.29)

p1
k|k(ak, xk, νk) =

1− pd
[
1−

∑

yk∈Zk

`(yk|ak, xk, νk)

ξ κ(yk)

]

1− pd (1− Γ1)
p1
k|k−1(ak, xk, νk)

(7.30)

where

Γ0
4
=

∑

yk∈Zk

〈
`(yk|xk, νk), p0

k|k−1(xk, νk)
〉

ξ κ(yk)
(7.31)

Γ1
4
=

∑

yk∈Zk

〈
`(yk|ak, xk, νk), p1

k|k−1(ak, xk, νk)
〉

ξ κ(yk)
(7.32)

and Γ
4
= Γ0 − Γ1.

Proof: The correction equation of the multiple model Bayes random set

filter for secure state estimation under switching attacks with possible extra

packet injection follows from a generalization of the Bayes rule (7.13), which

yields

p(Ak, xk, νk|Zk) =
λ(Zk|Ak, xk, νk) p(Ak, xk, νk|Zk−1)

p(Zk|Zk−1)
(7.33)
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where λ(Zk|Ak, xk, νk) is given by (7.24) and (7.25), while

p(Zk|Zk−1) =
〈
λ(Zk|Ak, xk, νk), p(Ak, xk, νk|Zk−1)

〉

=
〈
λ(Zk|∅, xk, νk), p(∅, xk, νk|Zk−1)

〉

+
〈
λ(Zk|{ak}, xk, νk), p({ak}, xk, νk|Zk−1)

〉
. (7.34)

The posterior probability of signal attack existence rk|k can be obtained from

the posterior density (7.33) with Ak = ∅ via

rk|k = 1−
∫∫

p(∅, xk, νk|Zk) dxkdνk (7.35)

where - using (7.24), (7.26) and (7.34) in (7.33) - we have

p(∅, xk, νk|Zk) = (1− rk|k−1) p0
k|k−1(xk, νk). (7.36)

From (7.34), combining (7.24), (7.25), and (7.26), we obtain

p(Zk|Zk−1) = γ(Fk)

[
1− pd + pd(1− rk|k−1)Γ1 + pdrk|k−1Γ2

]
(7.37)

which is subsequently used together with (7.36) and (7.24) to obtain

p(∅, xk, νk|Zk) from (7.33), and finally (7.28) via (7.35). Moreover,

p0
k|k(xk, νk) = p(∅, xk, νk|Zk)/(1− rk|k), and the joint density for the system

under attack can be easily derived from the posterior density with Ak = {ak}
by recalling that p1

k|k(ak, xk, νk) = p({ak}, xk, νk|Zk)/rk|k, where

p({ak}, xk, νk|Zk) = rk|k−1 · p1
k|k−1(ak, xk, νk) . (7.38)

7.3.2 Dynamic model and prediction

Let us next introduce the dynamic model of the MM-HBRS (A, x, ν) essential

to derive the prediction equations. First, it is assumed that, in the case of a

system under normal operation at time k, an attack ak+1 will be launched

to the system by an adversary during the sampling interval with probability

pb. On the other hand, if the system is under attack (i.e., Ak is a singleton),

it is supposed that the adversarial action will endure from time step k to

time step k + 1 with probability ps. It is further assumed that (A, x, ν) is a

Markov process with joint transitional density

p(Ak+1, xk+1, νk+1|Ak, xk, νk) = p(xk+1, νk+1|Ak, xk, νk) p(Ak+1|Ak)

(7.39)
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which ensues from considering the attack as a stochastic process independent

of the system state. In addition, note that

p(xk+1, νk+1|Ak, xk, νk) =

{
p(νk+1|νk) p(xk+1|xk, νk), if Ak = ∅
p(νk+1|νk) p(xk+1|ak, xk, νk), if Ak = {ak}

(7.40)

and that the dynamics of the Markov process Ak in (7.39) is Bernoulli, i.e.

p(Ak+1|∅) =

{
1− pb, if Ak+1 = ∅
pb p(ak+1), if Ak+1 = {ak+1}

(7.41)

p(Ak+1|{ak}) =

{
1− ps, if Ak+1 = ∅
ps p(ak+1), if Ak+1 = {ak+1}

(7.42)

where p(ak+1) is the PDF of the attack input vector. Clearly, when the

attack vector is completely unknown, a non-informative PDF (e.g., uniform

in the attack space) can be used as p(ak+1). Under the above assumptions,

an exact recursion for the prior density can be obtained, as stated in the

following theorem.

Theorem 10. Given the posterior multiple model hybrid Bernoulli density

p(Ak, xk, νk|Zk) at time k of the form (7.27), fully characterized by the pa-

rameter triplet
(
rk|k, p0

k|k(xk, νk), p1
k|k(ak, xk, νk)

)
, also the predicted density

turns out to be multiple model hybrid Bernoulli of the form

p(Ak+1, xk+1, νk+1|Zk) (7.43)

=





(1− rk+1|k) p0
k+1|k(xk+1, νk+1), if Ak+1 = ∅

rk+1|k · p1
k+1|k(ak+1, xk+1, νk+1), if Ak+1 = {ak+1}



144 Dynamic field estimation in adversarial environments

with parameters

rk+1|k = (1− rk|k) pb + rk|k ps (7.44)

p0
k+1|k(xk+1, νk+1) =

(1− rk|k)(1− pb) pk+1|k(xk+1|∅)
1− rk+1|k

+
rk|k(1− ps) pk+1|k(xk+1|{ak})

1− rk+1|k
(7.45)

p1
k+1|k(ak+1, xk+1, νk+1) =

(1− rk|k) pb pk+1|k(xk+1|∅) p(ak+1)

rk+1|k

+
rk|k ps pk+1|k(xk+1|{ak}) p(ak+1)

rk+1|k
(7.46)

where

pk+1|k(xk+1|∅) =
〈
p(xk+1|xk, νk), p0

k|k(xk, νk)
〉

(7.47)

pk+1|k(xk+1|{ak}) =
〈
p(xk+1|ak, xk, νk), p1

k|k(ak, xk, νk)
〉
. (7.48)

Proof: The prediction equation of the multiple model Bayes random set

filter is given by the following generalization of the Chapman-Kolmogorov

equation (7.12)

p(Ak+1, xk+1, νk+1|Zk) =
〈
p(Ak+1, xk+1, νk+1|Ak, xk, νk), p(Ak, xk, νk|Zk)

〉

= (1− rk|k)
〈
p(Ak+1, xk+1, νk+1|∅, xk, νk), p0

k|k(xk, νk)
〉

+ rk|k
〈
p(Ak+1, xk+1, νk+1|{ak}, xk, νk), p1

k|k(ak, xk, νk)
〉

where the set integral definition (7.14) and (7.27) have been used. Then, we

solve for Ak+1 = ∅. From (7.39), (7.40), and (7.41), one has

p(∅, xk+1, νk+1|Zk) (7.49)

= (1− rk|k)(1− pb) p(νk+1|νk)
〈
p(xk+1|xk, νk), p0

k|k(xk, νk)
〉

+ rk|k(1− ps) p(νk+1|νk)
〈
p(xk+1|ak, xk, νk), p1

k|k(ak, xk, νk)
〉
.

Next, using (7.47) and (7.48), (7.49) becomes

p(∅, xk+1, νk+1|Zk) (7.50)

= (1− rk|k) (1− pb) p(νk+1|νk) pk+1|k(xk+1|∅)
+ rk|k (1− ps) p(νk+1|νk) pk+1|k(xk+1|{ak})
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Analogously, for Ak+1 = {ak+1} we obtain

p({ak+1}, xk+1, νk+1|Zk) =

[
(1− rk|k) pb p(νk+1|νk) pk+1|k(xk+1|∅)

+ rk|k ps p(νk+1|νk) pk+1|k(xk+1|{ak})
]
p(ak+1) .

7.4 Gaussian-mixture implementation

Although no closed-form solution to the Bayes optimal recursion is admitted

in general, for the special class of linear Gaussian models it is possible to an-

alytically propagate in time the posterior densities p0
k|k(·) and p1

k|k(·) in the

form of Gaussian mixtures (weights, means and covariances), and the prob-

ability of a signal attack. Note that in the case of nonlinear models and/or

non-Gaussian noises, the solution can be obtained via nonlinear extensions of

the GM approximation (e.g. Unscented/Extended GM) or sequential Monte

Carlo methods (i.e. particle filter).

Denoting by N (x;m,P ) a Gaussian PDF in the variable x, with mean m

and covariance P , the closed-form solution assumes linear Gaussian obser-

vation and transition models conditioned on the modal state, i.e. for each

mode i ∈M one has

`(yk|xk, νk = i) = N (y;Cixk, R
i) (7.51)

`(yk|ak, xk, νk = i) = N (y;Cixk +Hiak, R
i) (7.52)

p(xk+1|xk, νk = i) = N (x;Aixk, Q
i) (7.53)

p(xk+1|ak, xk, νk = i) = N (x;Aixk +Giak, Q
i) (7.54)

In addition, the (a priori) signal attack model can be expressed as a Gaussian

mixture of the form

p(a) =

Ja∑

j=1

ω̃a,jN (a; ãj , P̃ a,j) (7.55)

and the probabilities of signal attack survival ps and measurement delivery

pd are assumed independent of both the system state and mode, i.e.

ps(x, ν) = ps (7.56)

pd(x, ν) = pd . (7.57)
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In the GM implementation, each probability density at time k conditioned

on mode νk = i is represented by the following set of parameters
(
rk|k, p

0,i
k|k(xk), p1,i

k|k(ak, xk)
)

=
(
rk|k,

{
ω0,ij
k|k ,m

0,ij
k|k , P

0,ij
k|k
}J0

k|k
j=1

,
{
ω1,ij
k|k ,m

1,ij
k|k , P

1,ij
k|k
}J1

k|k
j=1

)
, i ∈M

where symbols ω and J denote, respectively, weights and number of mixture

components such that

p0,i
k|k(xk) = p0

k|k(xk, νk = i) =

J0
k|k∑

j=1

ω0,ij
k|k N (m0,ij

k|k , P
0,ij
k|k )

p1,i
k|k(ak, xk) = p1

k|k(ak, xk, νk = i) =

J1
k|k∑

j=1

ω1,ij
k|k N (m1,ij

k|k , P
1,ij
k|k ).

In the above equation we defined m0
k|k = x̂0

k|k, m1
k|k = [x̂1T

k|k, â
T
k ]T , P 0

k|k
4
=

E[(xk−x̂0
k|k)(xk−x̂0

k|k)T ], P 1
k|k =

[
P 1x
k|k P xak
P axk P ak

]
, and P 1x

k|k
4
= E[(xk−x̂1

k|k)(xk−

x̂1
k|k)T ], (P xak )T = P axk

4
= E[(ak − âk)(xk − x̂1

k|k)T ], P ak
4
= E[(ak − âk)(ak −

âk)T ]. The weights are such that
∑J0

k|k
j=1 ω

0,j
k|k = 1, and

∑J1
k|k
j=1 ω

1,j
k|k = 1.

The Gaussian Mixture implementation of the Multiple Model Hybrid

Bernoulli Filter (GM-MM-HBF) is described as follows.

7.4.1 GM-MM-HBF correction

Proposition 3. Suppose assumptions (7.51)-(7.55) hold, the predicted FISST

density at time k is fully specified by the triplet

(
rk|k−1, p

0
k|k−1(xk, νk), p1

k|k−1(ak, xk, νk)
)

and p0
k|k−1(·), p1

k|k−1(·) for each i ∈M are Gaussian mixtures of the form

p0,i
k|k−1(xk) =

J0,i
k|k−1∑

j=1

ω0,ij
k|k−1N (m0,ij

k|k−1, P
0,ij
k|k−1) (7.58)

p1,i
k|k−1(ak, xk) =

J1,i
k|k−1∑

j=1

ω1,ij
k|k−1N (m1,ij

k|k−1, P
1,ij
k|k−1) (7.59)
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where m0,ij
k|k−1 = x̂0,ij

k|k−1, m1,ij
k|k−1 = [(x̂1,ij

k|k−1)T , (âjk)T ]T ,
∑J0,i

k|k−1

j=1 ω0,ij
k|k−1 = 1,

and
∑J1,i

k|k−1

j=1 ω1,ij
k|k−1 = 1.

Then the posterior FISST density
(
rk|k, p0

k|k(xk, νk), p1
k|k(ak, xk, νk)

)
for each

mode i is given by

rk|k =
1− pd + pd Γ1

1− pd + pd(1− rk|k−1)Γ0 + pd rk|k−1Γ1
rk|k−1 (7.60)

p0,i
k|k(ak, xk) =

J0,i
k|k∑

j=1

ω0,ij
k|k N (m0,ij

k|k , P
0,ij
k|k ) (7.61)

=

J0,i
k|k−1∑

j=1

ω0,ij
D̄,k|kN (m0,ij

k|k−1, P
0,ij
k|k−1) +

∑

yk∈Zk

J0,i
k|k−1∑

j=1

ω0,ij
D,k|kN (m0,ij

k|k , P
0,ij
k|k )

p1,i
k|k(ak, xk) =

J1,i
k|k∑

j=1

ω1,ij
k|k N (m1,ij

k|k , P
1,ij
k|k ) (7.62)

=

J1,i
k|k−1∑

j=1

ω1,ij
D̄,k|kN (m1,ij

k|k−1, P
1,ij
k|k−1) +

∑

yk∈Zk

J1,i
k|k−1∑

j=1

ω1,ij
D,k|kN (m1,ij

k|k , P
1,ij
k|k )

where we denote, for b = 0, 1:

ωb,ij
D̄,k|k =

(1− pd)ωb,ijk|k−1

∆b
, ωb,ijD,k|k =

pd ω
b,ij
k|k−1q

b,ij
k (yk)

∆b ξ κ(yk)
(7.63)

∆b = 1− pd + pd
∑

yk∈Zk

∑

h∈M

J1,h
k|k−1∑

l=1

ωb,hlk|k−1

ξ κ(yk)
qb,hlk (yk)

and

q0,ij
k (yk) = N (yk;Cim0,ij

k|k−1, C
iP 0,ij
k|k−1C

iT +Ri)

q1,ij
k (yk) = N (yk; C̃im1,ij

k|k−1, C̃
iP 1,ij
k|k−1C̃

iT +Ri)

with C̃i
4
= [Ci, Hi].

Proof: We first derive the posterior density p1,i
k|k(·), then p0,i

k|k(·) can be

obtained analogously.
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From Theorem 3:

p1,i
k|k(ak, xk) =

1− pd
1− pd + pdΓ1

p1,i
k|k−1(ak, xk) (7.64)

+
pd

1− pd + pdΓ1

∑

yk∈Zk

`(yk|ak, xk, νk = i)

ξ κ(yk)
p1,i
k|k−1(ak, xk)

where

Γ1 =
∑

yk∈Zk

〈
`(yk|ak, xk, νk = i), p1,i

k|k−1(ak, xk)
〉

ξ κ(yk)
. (7.65)

By substituting (7.59) and (7.52) into (7.65), we obtain

p1,i
k|k(ak, xk) =

J1,i
k|k−1∑

j=1

1− pd
1− pd + pdΓ1

ω1,ij
k|k−1N (m1,ij

k|k−1, P
1,ij
k|k−1)

+
∑

yk∈Zk

J1,i
k|k−1∑

j=1

ω1,ij
k|k−1

pd
1− pd + pdΓ1

N (y;Cixk +Hiak, R
i)

ξ κ(yk)
N (m1,ij

k|k−1, P
1,ij
k|k−1).

Then, by applying a standard result for Gaussian functions [112, Lemma 2],

we can write

N (y;Cixk +Hiak, R
i)N (m1,ij

k|k−1, P
1,ij
k|k−1) = q1,ij

k (yk)N (m1,ij
k|k , P

1,ij
k|k )

where

q1,ij
k (yk) = N (yk; C̃im1,ij

k|k−1, C̃
iP 1,ij
k|k−1C̃

iT +Ri). (7.66)

In the special case of linear Gaussian models, m1,ij
k|k and P 1,ij

k|k can be cal-

culated following the correction step of the filter for joint input and state

estimation of linear discrete-time systems [109], introduced in Section 7.2.4.

In particular, m1,ij
k|k consists of

x̂1,ij
k|k = x̂1,ij

k|k−1 + L̃1,ij
k (yk − Cix̂1,ij

k|k−1 −Hiâijk ) = L1,ij
k (yk − Cix̂1,ij

k|k−1)

âijk = M ij
k (yk − Cix̂1,ij

k|k−1) (7.67)

where

L1,ij
k = L̃1,ij

k (I −HiM ij
k ) (7.68)

L̃1,ij
k = P 1,ij

k|k−1C
iT (S1,ij

k )−1 (7.69)

S1,ij
k = CiP 1,ij

k|k−1C
iT +Ri (7.70)

M ij
k =

[
HiT (S1,ij

k )−1Hi
]−1

HiT (S1,ij
k )−1. (7.71)
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The elements composing P 1,ij
k|k can be computed as

P a,ijk = (HiT (S1,ij
k )−1Hi)−1 (7.72)

P 1x,ij
k|k = (I − L1,ij

k Ci)P 1,ij
k|k−1 (7.73)

P xa,ijk = (P ax,ijk )T = −L̃1,ij
k HiP a,ijk . (7.74)

In addition, Γ1 is obtained by substituting (7.52) and (7.59) in (7.65), and

by using integration (7.19) we obtain

Γ1 =
∑

yk∈Zk

∑

h∈M

J1,h
k|k−1∑

l=1

ω1,hl
k|k−1

ξ κ(yk)
q1,hl
k (yk). (7.75)

Thus, by substituting (7.66) and (7.75) in (7.66), with means and covariances

given by (7.67) and (7.72)-(7.74), we can write

p1,i
k|k(ak, xk) =

J1,i
k|k∑

j=1

ω1,ij
k|k N (m1,ij

k|k , P
1,ij
k|k ) (7.76)

which comprises J1,i
k|k−1(1 + |Zk|) components, i.e.

p1,i
k|k(ak, xk) =

J1,i
k|k−1∑

j=1

ω1,ij
D̄,k|kN (m1,ij

k|k−1, P
1,ij
k|k−1) +

∑

yk∈Zk

J1,i
k|k−1∑

j=1

ω1,ij
D,k|kN (m1,ij

k|k , P
1,ij
k|k )

with weights given by (7.63). Note that, as we can see from above, it turns

out that J1,i
k|k = J1,i

k|k−1 + |Zk| J1,i
k|k−1 = J1,i

k|k−1(1+ |Zk|), where the first legacy

components correspond to the fact that no measurement has been delivered,

while the remaining components are the ones corrected when one or multiple

measurements are received.

Following the same rationale, analogous results can be obtained for p0,i
k|k,

with the exception that no signal attack estimate is obviously performed.

The corrected probability of signal attack existence can be written, from

(7.28), as

rk|k =
1− pd + pd Γ1

1− pd + pd(1− rk|k−1)Γ0 + pd rk|k−1Γ1
rk|k−1 (7.77)

where Γ1 is given in (7.75), and

Γ0 =
∑

yk∈Zk

∑

h∈M

J0,h
k|k−1∑

l=1

ω0,hl
k|k−1

ξ κ(yk)
q0,hl
k (yk) . (7.78)
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7.4.2 GM-MM-HBF prediction

Proposition 4. Suppose assumptions (7.51)-(7.55) hold, the posterior FISST

density at time k is fully specified by the triplet
(
rk|k, p0

k|k(xk, νk), p1
k|k(ak, xk, νk)

)
,

and p0
k|k(·), p1

k|k(·) for each i ∈M are Gaussian mixtures of the form

p0,i
k|k(xk) =

J0,i
k|k∑

j=1

ω0,ij
k|k N (m0,ij

k|k , P
0,ij
k|k ) (7.79)

p1,i
k|k(ak, xk) =

J1,i
k|k∑

j=1

ω1,ij
k|k N (m1,ij

k|k , P
1,ij
k|k ). (7.80)

Then the predicted FISST density

(
rk+1|k, p

0
k+1|k(xk+1, νk+1), p1

k+1|k(ak+1, xk+1, νk+1)
)

for each mode i is given by

rk+1|k = (1− rk|k)pb + rk|kps (7.81)

p0,i
k+1|k(xk+1) =

J0,i
k+1|k∑

j=1

ω0,ij
k+1|kN (m0,ij

k+1|k, P
0,ij
k+1|k) (7.82)

p1,i
k+1|k(ak+1, xk+1) =

J1,i
k+1|k∑

j=1

ω1,ij
k+1|kN (m1,ij

k+1|k, P
1,ij
k+1|k) (7.83)

where (7.82) can be written as

p0,i
k+1|k(xk+1) =

∑

h∈M

J0,h
k|k∑

j=1

ω0,hj

B̄,k+1|kN (m0,hj

B̄,k+1|k, P
0,hj

B̄,k+1|k)

︸ ︷︷ ︸
no attack-birth

+
∑

h∈M

J1,h
k|k∑

j=1

ω0,hj

S̄,k+1|kN (m0,hj

S̄,k+1|k, P
0,hj

S̄,k+1|k)

︸ ︷︷ ︸
no attack-survival

(7.84)
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with

m0,hj

B̄,k+1|k = Ahm0,hj
k|k

P 0,hj

B̄,k+1|k = AhP 0,hj
k|k Ah

T

+Qh

ω0,hj
B̄,k+1|k =

(1− rk|k)(1− pb)
1− rk+1|k

πhi ω
0,hj
k|k

m0,hj

S̄,k+1|k = Ãhm1,hj
k|k

P 0,hj

S̄,k+1|k = ÃhP 1,hj
k|k Ãh

T

+Qh

ω0,hj

S̄,k+1|k =
rk|k(1− ps)
1− rk+1|k

πhi ω
1,hj
k|k .

Moreover, (7.83) can be written as

p1,i
k+1|k(ak+1, xk+1)

=
∑

h∈M

J0,h
k|k∑

j=1

Ja∑

l=1

ω1,hjl
B,k+1|kN (m1,hjl

B,k+1|k, P
1,hjl
B,k+1|k)

︸ ︷︷ ︸
attack-birth

+
∑

h∈M

J1,h
k|k∑

j=1

Ja∑

l=1

ω1,hjl
S,k+1|kN (m1,hjl

S,k+1|k, P
1,hjl
S,k+1|k)

︸ ︷︷ ︸
attack-survival

(7.85)

where

m1,hjl
B,k+1|k =

[
Ahm0,hj

k|k
ãl

]

P 1,hjl
B,k+1|k =

[
AhP 0,hj

k|k Ah
T

+Qh 0

0 P̃ a,l

]

ω1,hjl
B,k+1|k =

(1− rk|k) pb

rk+1|k
πhi ω

0,hj
k|k ω̃a,l
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m1,hjl
S,k+1|k =

[
Ãhm1,hj

k|k
ãl

]

P 1,hjl
S,k+1|k =

[
ÃhP 1,hj

k|k Ãh
T

+Qh 0

0 P̃ a,l

]

ω1,hjl
S,k+1|k =

rk|k ps
rk+1|k

πhi ω
1,hj
k|k ω̃

a,l.

Proof: The predicted probability of signal attack existence comes directly

from (7.44). Let us now derive the posterior density p1,i
k|k(·).

From (7.46) in Theorem 4:

p1,i
k+1|k(ak+1, xk+1) (7.86)

=
(1− rk|k) pb p(νk+1 = i|νk)

rk+1|k

〈
p(xk+1|xk, νk = i), p0

k|k(xk, νk = i)
〉
p(a)

+
rk|k ps p(νk+1 = i|νk)

rk+1|k

〈
p(xk+1|ak, xk, νk = i), p1

k|k(ak, xk, νk = i)
〉
p(a).

Using (7.53), (7.79) in the first term, and (7.54), (7.80) in the second term,

and recalling the definition of transitional probabilities (7.5), we can rewrite

p1,i
k+1|k(ak+1, xk+1) =

(1− rk|k) pb

rk+1|k

∑

h∈M
πhi

∫
N (x;Ahxk, Q

h) (7.87)

×
J0,h
k|k∑

j=1

ω0,hj
k|k N (m0,hj

k|k , P
0,hj
k|k ) dxk

Ja∑

l=1

ω̃a,lN (a; ãl, P̃ a,l)

+
rk|k ps
rk+1|k

∑

h∈M
πhi

∫∫
N (x;Ahxk +Ghak, Q

h)

×
J1,h
k|k∑

j=1

ω1,hj
k|k N (m1,hj

k|k , P
1,hj
k|k ) dak+1dxk

Ja∑

l=1

ω̃a,lN (a; ãl, P̃ a,l).

Hence, using Lemma 1 in [113], we finally derive (7.85).

In a similar fashion, we can obtain p0,i
k+1|k. From (7.45) in Theorem 4:

p0,i
k+1|k(xk+1) (7.88)

=
(1− rk|k)(1− pb) p(νk+1 = i|νk)

1− rk+1|k

〈
p(xk+1|xk, νk = i), p0

k|k(xk, νk = i)
〉

+
rk|k (1− ps) p(νk+1 = i|νk)

1− rk+1|k

〈
p(xk+1|ak, xk, νk = i), p1

k|k(ak, xk, νk = i)
〉
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which leads to

p0,i
k+1|k(xk+1) =

(1− rk|k)(1− pb)
1− rk+1|k

∑

h∈M
πhi

∫
N (x;Ahxk, Q

h) (7.89)

×
J0,h
k|k∑

j=1

ω0,hj
k|k N (m0,hj

k|k , P
0,hj
k|k ) dxk

+
rk|k(1− ps)
1− rk+1|k

∑

h∈M
πhi

∫∫
N (x;Ahxk +Ghak, Q

h)

×
J1,h
k|k∑

j=1

ω1,hj
k|k N (m1,hj

k|k , P
1,hj
k|k )

J1,h
k|k∑

j=1

ω1,hj
k|k N (m1,hj

k|k , P
1,hj
k|k ) dxk

and finally to (7.84).

7.5 Numerical example

In this section, we demonstrate the effectiveness of the proposed Bayesian

random-set approach for secure CPS state estimation in the presence of

mode/signal switching attacks, extra packet injection attacks as well as un-

certainty on measurement delivery. The proposed approach can be easily

applied to the case of malicious source estimation described in Section 7.2.3,

which is analogous to the source estimation problem presented in Chapter 5

with the additional challenge introduced by the presence of adversarial cyber

attacks. However, it is important to note that the Bayesian random set fil-

ter proposed in Section 7.3 is very general and independent of the particular

application under consideration. Hence, it is shown how the same approach

can be adopted in power systems, specifically for secure estimation of electric

power grids.

Let us consider the Western System Coordinating Council (WSCC) 9-bus

test case shown in Fig. 1, consisting of 3 synchronous generators, 3 generator

terminal buses, and 3 load buses. The transmission lines’ parameters, the

inertia and the damping coefficients of generators are taken from [114]. The

dynamics of the system can be described by the linearized swing equation

for the n = 6 active buses, derived through the Kron reduction by [115] of

the linear small-signal power network model. The n-dimensional state of

the system comprises both the rotor angles and the frequencies of each gen-

erator. After discretization (with sampling interval T = 0.01s), the power
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Figure 7.1: Single-line model of the WSCC 9-bus system. The true victim

load buses 6 and 8 are circled in red.

system model takes the form (7.1)-(7.2), where each mode corresponds to

one of the m = 3 different hypotheses on the set of vulnerable load buses

V1 = {6, 8}, V2 = {5, 6}, and V3 = {5, 8}. At time k = 50 a signal attack

vector ak = [0.05, 0.04]T per-unit is injected into the system to abruptly

increase the real power demand of the two victim load buses 6 and 8 with

an additional loading of 5.56% and, respectively, 4%. This type of attack,

referred to as load altering attack by [116], can provoke a loss of synchrony

of the rotor angles and hence a deviation of the rotor speeds of all generators

from the nominal value ωs = 60 Hz. In this numerical study, the probabil-

ities of attack-birth and attack-survival are fixed, respectively, at pb = 0.2

and ps = 0.8. A network of 6 sensors is deployed to measure the state of

the system. The system-generated measurement vector is supposed to be

delivered at the monitor/control center with probability pd = 0.98. The

extra fake measurements injected into the sensor channel are modeled as a

Poisson RFS with average number ξ = 40 and probability density uniformly

distributed over the interval [−10, 0], suitably chosen to emulate system-

originated observations. Fig. 7.2 shows the resulting number of fake mea-

surements maliciously injected at each time step and the cases of undelivered

system-originated measurement.

For the joint task of signal attack detection and mode-state estimation,

here we adopted the Static version (introduced in Section 2.2) of the GM-
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Figure 7.2: Number of extra fake measurements injected (blue circles), and

cases of undelivered system-originated measurement (red cross in −1) vs

time. The proposed approach turns out to be particularly robust to extra

packet injections.
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Figure 7.3: Mode probabilities µ̄ik|k, i = 1, 2, 3. The three possible attack

modes of the system share similar probabilities within the time interval [0, 49]

when there is no signal attack. The different behaviour is revealed once ak
enters into action at time k = 50 and the unknown mode i = 1 is correctly

estimated.

MM-HBF (described in Section 4). It can be noticed from Fig. 7.3 that the

proposed secure state estimation algorithm succeeds in detecting the switch-

ing mode attack, and hence in estimating the true system’s mode of operation

(characterized by the highest mode probability) i = 1, corresponding to a
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Figure 7.4: True (rk) and estimated (r∗k|k) probability of existence of the

signal attack ak.

load altering attack on V1. Note that the posterior mode probabilities shown

in Fig. 7.3 are determined as follows:

µ̄ik|k =
ω0,i
k|k(1− rik|k) + ω1,i

k|k r
i
k|k∑m

i=1 ω
0,i
k|k(1− rik|k) + ω1,i

k|k r
i
k|k
, i = 1, 2, 3.

Moreover, the proposed filter promptly detects the unknown signal attack,

as it can be seen from the attack probability r∗k|k in Fig. 7.4 which takes

the unitary value after time k = 50. At each time instant k the estimated

attack probability r∗k|k = ri
∗

k|k can be computed from the estimated mode

i∗ = arg max µ̄ik|k.

7.6 Conclusions

It has been shown how to securely estimate the state of a cyber-physical

system in presence of attacks of various types by which the cyber-attacker

can simultaneously switch an attack signal and the attack mode, and can

also inject fake measurements. All these ingredients have been incorporated

in a random set stochastic Bayesian filtering problem where Bernoulli and

Poisson random sets have been used to model the attack signal switching

and, respectively, measurement injection while multiple models have been

exploited to account for different attack modes. A recursive Bayesian filter

solving the formulated problem has been derived and its Gaussian mixture



7.6 Conclusions 157

implementation has been developed and tested on a power network case

study, exhibiting promising results in terms of prompt attack detection and

resilient state estimation.
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Chapter 8

Conclusion

8.1 Summary of contributions

The main contributions of this work can be summarized as follows.

Chapter 4: The contributions of this chapter are threefold. First, we de-

velop scalable distributed filters for distributed-parameter systems by suit-

ably adapting the so-called Schwarz decomposition methods [46–51], which

allow to split the overall domain into smaller subdomains and assign each of

them to different interconnected processing nodes. Second, we exploit the

finite element (FE) method [35, 36, 52] in order to approximate the origi-

nal infinite-dimensional filtering problem into a, possibly large-scale, finite-

dimensional one. Combining these two ingredients, we propose a novel dis-

tributed finite element Kalman filter (FE-KF) which generalizes to the more

challenging distributed case previous work on FE Kalman filtering [53, 54].

Moreover, we show that the parallel FE-based implementation of the Schwarz

method on the overall system is equivalent to performing a particular time-

discretization scheme on the interconnected subsystems, and we verify the

well-posedness of the proposed discretization method in terms of numer-

ical stability (i.e., in terms of boundedness and convergence of the time-

discretization errors). Third, we provide results on the stability of the pro-

posed distributed FE Kalman filter. Last but not least, a practical procedure,

which requires the tuning of only one (or few) scalar parameters, is provided

to check and guarantee the stability property.

159
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Chapter 5: This chapter provides two major contributions to the source

estimation problem. First, inspired by the classic notion of structural iden-

tifiability [66]- [67], this work defines the concept of source identifiability,

i.e. the possibility of detecting the source and uniquely determining its

position and intensity from available pointwise-in-time-and-space field mea-

surements. Specifically, system-theoretic conditions for identifiability are

derived in terms of rank tests on suitable polynomial matrices for both cases

in which the source intensity is regarded as an unknown input or is modeled

as the output of an appropriate exosystem. Second, we propose a robust

field estimation strategy to reconstruct unknown sources in spatially dis-

tributed systems. In particular, a multiple-model Kalman filtering approach

to source estimation is undertaken by considering all hypotheses (modes)

corresponding to the source location in any possible element of the FE mesh

plus a further hypothesis accounting for the possible source absence. Both

cases of motionless source with unknown position and of moving source are

addressed, leading to the design of two different algorithms for source estima-

tion: the Finite Element Static Multiple Model (FE-SMM) and, respectively,

the dynamic Finite Element Interacting Multiple Model (FE-IMM).

Chapter 6: The contributions of this chapter are threefold. First, relying

on the so-called noise-aided paradigm, according to which in binary sen-

sor networks the presence of measurement noise can be a helpful source of

statistical information by randomly shifting the analog measurement, this

chapter presents a novel approach to recursive state estimation given binary

observations. The proposed approach is based on a Moving-Horizon (MH)

approximation of the Maximum A-posteriori Probability (MAP) estimation

and extends previous work [81]- [87] concerning parameter estimation to

recursive state estimation. A further contribution is to show that for a lin-

ear system the optimization problem arising from the MH-MAP formulation

turns out to be convex and, hence, practically feasible for real-time imple-

mentation. Moreover, the proposed optimization-based strategy, capable of

dealing with physical constraints on state and noise variables, is applied

to the challenging problem of dynamic field estimation over binary sensor

networks, which convey the minimum amount of information. Finally, simu-

lation results relative to a dynamic field estimation case-study have exhibited

the conjectured noise-aided feature of the proposed estimator in that the es-

timation accuracy improves, starting from a null measurement noise, until

the variance of the latter achieves an optimal value beyond which estimation
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performance decays.

Chapter 7: The contributions of this chapter are threefold. First, the joint

attack detection and mode-state estimation problem is formulated and solved

following a stochastic Bayesian approach which exploits Bernoulli and Pois-

son random sets for modeling the attack presence/existence and, respectively,

fake measurements, as well as multiple models for handling the different at-

tack modes. The proposed approach can deal with nonlinear, noisy and

perturbed systems. Additionally, it can encompass in a unique framework

different types of attacks (switching signal and mode attacks, extra packet

injection, packet substitution, etc.), and provides (discrete or continuous)

probability distributions of the attack existence, attack mode, attack sig-

nal and system state which are very useful for taking decisions. Further,

it is shown how the proposed general framework is well-suited to formu-

late the problem of dynamic field estimation in the presence of a malicious

source injected into the spatially distributed system of interest. Finally, a

Gaussian-mixture implementation of the joint attack detector and mode-

state estimator has been developed based on the recursion derived for the

secure Bayes-optimal filter.

8.2 Directions for future work

In this final section we present interesting directions for future research on

dynamic field estimation in complex environments.

• The design of centralized and distributed field estimators exploiting

the finite-element approximation discussed in Chapter 4 can be ex-

tended to the estimation of fields governed by nonlinear partial dif-

ferential equations and/or different classes of PDEs, such as the wave

equation arising in acoustics, optics, electromagnetics, fluid dynamics,

and Navier-Stokes equations describing the dynamics of weather, ocean

currents, water and air flows, etc.

• Future work on the problem of source estimation addressed in Chapter

5 may consider the multi-source case, which introduces the additional

issues of an unknown (random) number of active sources altering the

field of interest, and hence sensors measuring the field resulting from

the combined effect of different sources. The consequent observation
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model is said to be superpositional as measurements become functions

of all the sources within the monitored region. The multi-source es-

timation problem amounts to estimating the number, intensity and

location of all the diffusive sources present at every time step, as well

as the overall induced field.

• Future research efforts will be also devoted to exploit the sparse and

localized structure of the mass and stiffness matrices, originating from

the application of the finite-element approximation presented in Chap-

ter 4, in order to spatially decompose the overall system. In particular,

the idea is to directly apply partition-based square-root filtering to the

descriptor (implicit) system described in Section 4.3 (resulting from

the spatial discretization of the original PDE system) so as to reduce

the computational burden and improve the numerical properties of the

field estimation scheme.

• Robust (with respect to the presence of unknown sources) centralized

and distributed finite element Kalman filters can be employed for air

quality monitoring in order to map the concentration of diffusive pol-

lutants from measurements provided by a wireless network of environ-

mental sensors deployed in known locations over an area of interest. Air

quality monitoring of a complex urban environment involves multiple

sources of pollution and imprecise awareness of the transport model pa-

rameters. Moreover, since a considerable contribution to air pollution

issues is related to non-point sources, i.e. vehicles, it is also important

to be able to estimate these traffic-induced emissions. Thus, this fu-

ture research is motivated by the idea of identifying multiple sources

and exploiting data fusion techniques in order to combine heteroge-

neous observations, i.e. pollution data, traffic flow estimates coming

from real-time traffic monitoring systems, and meteorological measure-

ments, such as wind speed and direction, temperature and humidity.

The aggregated data allows for a better real-time reconstruction of the

urban air quality, and ensures enhanced accuracy with respect to con-

ventional monitors, which only measure the presence of contaminants

in concentrated-in-space locations and rely on inaccurate steady-state

models of the pollution propagation.

• Future directions on dynamic field estimation over binary sensor net-

works will concern stability properties of the MH-MAP state estimator
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and the design of fast algorithms able to overcome the main limitation

of the MH estimation approach, i.e. its need of on-line solutions of dy-

namic optimization problems. This issue becomes particularly relevant

in large-scale applications where the solution of the MH-MAP problem

might give rise to computational delays and thus efficient strategies are

required to reduce the excessive computational burden.

• A possible direction of investigation relative to the security issues intro-

duced in Chapter 7 may address the problem of detection-localization

of malicious sources (e.g. biochemical attacks, fires) altering a field of

interest characterized by PDE dynamics.

• Future steps will also include the design of distributed strategies for

joint attack detection and secure field estimation. The task is to se-

curely monitor the state of a cyber-physical system (governed by PDEs)

over a cluster-based network wherein multiple fusion nodes collect data

from sensors and cooperate in a neighborwise fashion by exchanging

information and performing data fusion via non-secure communication

links. If the attack detection-state estimation problem is formulated in

the context of random set theory as in Chapter 7, the main issue be-

comes how to fuse local probability densities in a secure way, i.e. when

it is not known how many and which densities received by neighboring

nodes have been injected by attackers and hence are not reliable.
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