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Abstract—The paper deals with decentralized state
estimation for spatially distributed systems described
by linear partial differential equations from discrete in-
space-and-time noisy measurements provided by sensors
deployed over the spatial domain of interest. A fully scal-
able approach is pursued by decomposing the domain into
possibly overlapping subdomains assigned to different
processing nodes interconnected to form a network.
Each node runs a local finite-dimensional discrete-time
Kalman filter which exploits the finite element approach
for spatial discretization, a backward Euler method for
time-discretization and the parallel Schwarz method to it-
eratively enforce continuity of the field predictions over the
boundaries of adjacent subdomains. Numerical stability of
the adopted approximation scheme and stability of the pro-
posed distributed finite element Kalman filter are mathemat-
ically proved. The effectiveness of the proposed approach is
then demonstrated via simulation experiments concerning
the estimation of a bi-dimensional temperature field.

Index Terms—Distributed-parameter systems, finite ele-
ment method, Kalman filtering, networked state estimation.

I. INTRODUCTION

THE RECENT breakthrough of wireless sensor network
technology has made possible to cost-effectively monitor

spatially distributed systems via deployment of multiple sensors
over the area of interest. This clearly paves the way for several
important practical monitoring applications concerning, e.g.,
weather forecasting [1], water flow regulation [2], fire detec-
tion, diffusion of pollutants [3], smart grids [4], vehicular traffic
[5]. The problem of fusing data from different sensors can be
accomplished either in a centralized way, i.e. when there is a
single fusion center collecting data from all sensors and taking
care of the overall spatial domain of interest, or in distributed
(decentralized) fashion with multiple intercommunicating fu-
sion centers (nodes) each of which can only access part of the
sensor data and take care of a sub-region of the overall domain.
The decentralized approach is preferable in terms of scalability
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of computation with the problem size and will be, therefore,
undertaken in this paper.

Since spatially distributed processes are usually modeled as
infinite-dimensional systems, governed by partial differential
equations (PDEs), distributed state estimation for such systems
turns out to be a key issue to be addressed. While a lot of
work has dealt with distributed filters for finite-dimensional,
both linear [6]–[9] and nonlinear [10], systems as well as
for multitarget tracking [11], considerably less attention has
been devoted to the more difficult case of distributed-parameter
systems.

Recent work [12]–[16] has addressed the design of distributed
state estimators/observers for large-scale systems formed by
the sparse interconnection of many subsystems (compartments).
Such systems are possibly (but not necessarily) originated from
spatial discretization of PDEs. In particular, [12] presents a fully
scalable distributed Kalman filter based on a suitable spatial de-
composition of a complex large-scale system as well as on ap-
propriate observation fusion techniques among the local Kalman
filters. In [13], non-scalable consensus-based multi-agent esti-
mators are proposed wherein each agent aims to estimate the
state of the whole large-scale system. In [14], a moving-horizon
partition-based approach is followed in order to estimate the
state of a large-scale interconnected system and decentralization
is achieved via suitable approximations of covariances. Further,
[15] deals with dynamic field estimation by wireless sensor net-
works with special emphasis on sensor scheduling for trading
off communication/energy efficiency versus estimation perfor-
mance. In [16], design of distributed continuous-time observers
for partitioned linear systems is addressed.

As for the specific case of distributed-parameter systems,
interesting contributions have been provided in [17], [18] which
present consensus filters wherein each node of the network aims
to estimate the system state on the whole spatial domain of
interest.

In the present paper, as compared to [17], [18], a different
strategy is adopted in which each node is only responsible for
estimating the state over a sub-domain of the overall domain.
This setup allows for a solution which is scalable with respect
to the spatial domain (i.e., the computational complexity in
each node does not depend on the size of the whole spatial
domain but only of its region of competence). In this context,
the contributions of the present paper are summarized as follows:

1) We develop scalable distributed filters for distributed-
parameter systems by suitably adapting the so-called
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Schwarz decomposition methods [19]–[24], which al-
low to split the overall domain into smaller subdo-
mains and assign each of them to different interconnected
processing nodes.

2) We exploit the finite element (FE) method [25]–[27] in
order to approximate the original infinite-dimensional
filtering problem into a, possibly large-scale, finite-
dimensional one. Combining these two ingredients, we
propose a novel distributed finite element Kalman filter
which generalizes to the more challenging distributed
case previous work on FE Kalman filtering [28], [29].

3) We show that the parallel FE-based implementation of
the Schwarz method on the overall system is equivalent
to performing a novel time-discretization scheme on the
interconnected subsystems. Furthermore, we verify the
well-posedness of the proposed discretization method in
terms of numerical stability (i.e., in terms of boundedness
and convergence of the time-discretization errors).

4) We provide results on the stability of the proposed dis-
tributed FE Kalman filter. Last but not least, a practical
procedure, which requires the tuning of only one (or few)
scalar parameters, is provided to check and guarantee the
stability property.

Preliminary ideas on the topic can be found in [30].
The rest of the paper is structured as follows. Section II

introduces the basic notation and problem formulation. Then
Section III presents the centralized FE Kalman filter for
distributed-parameter systems. Section IV shows how to extend
such a filter to the distributed setting by means of the parallel
Schwarz method and analyzes the numerical stability in terms
of boundedness and convergence of the discretization errors.
Then, Section V provides results on the exponential stability
of the proposed distributed FE Kalman filter while Section VI
demonstrates its effectiveness via numerical examples related
to the estimation of a bi-dimensional temperature field. Finally,
Section VII ends the paper with concluding remarks and per-
spectives for future work.

II. PROBLEM FORMULATION

This paper addresses the estimation of a scalar, time-and-
space-dependent, field from given discrete, in both time and
space, measurements related to such a field provided by mul-
tiple sensors placed within the domain of interest. Let Ω be a
bounded domain of a d-dimensional Euclidean space IRd with
boundary ∂Ω, where d ∈ {1, 2, 3}. The spatial coordinate vec-
tor is denoted by p ∈ Ω. The scalar field to be estimated x (p, t)
is defined over the space-time domain Ω × IR+ , as the solution
of a partial differential equation (PDE) of the form

∂x

∂t
+ A(x) = f (1)

with (possibly unknown) initial condition x (p, 0) = x0(p),
p ∈ Ω, and homogeneous boundary conditions

B(x) = 0 on ∂Ω. (2)

The dynamic field is observed by a network of sensors i ∈ S �
=

{1, . . . , S} placed at the spatial locations si ∈ Ω, which provide
the measurements

yq,i = hi (x (si , tq )) + vq,i (3)

collected at discrete sampling instants tq , q ∈ Z+ = {1, 2, . . . },
such that 0 < t1 < t2 < · · · . In (1)–(3): f (p, t) is a forcing term
possibly affected by process noise; hi(·) is the measurement
function of sensor i; vq,1 , . . . , vq,S are mutually independent
white measurement noise sequences, also independent from the
initial state x0(p) = x (p, 0) for any p ∈ Ω.

The aim is to design a decentralized Kalman filter for spa-
tially distributed systems, i.e. to solve in a fully distributed
fashion the infinite-dimensional filtering problem of estimating
the state x(p, t) of system (1)–(2) given the locally gathered
measurements (3). The proposed solution relies on (i) the FE
method [25]–[26] for the approximation of the above problem
into a finite-dimensional one, and (ii) a domain decomposition
method for the subdivision of the system into interconnected
subsystems with possibly overlapping states. The idea is to de-
compose the original problem on the whole domain of interest
into estimation subproblems concerning smaller subdomains,
and then assign such subproblems to different nodes which can
locally process and exchange data in order to estimate their own
state. This ensures scalability of the distributed filter for moni-
toring the target field. To this end, let us consider the set of nodes
N = {1, . . . , N}, subdivide the domain Ω into possibly over-
lapping subdomains Ωm , m ∈ N , such that Ω =

⋃
m∈N Ωm .

Further, let ymq
�
= col {yq,i : si ∈ Ωm} denote the vector of

local measurements available to node m at time tq . Then, the
task of each nodem is to estimate the fieldx over the correspond-
ing subdomain Ωm exploiting only the local measurements ymq
and the information coming from the nodes associated to the
neighboring subdomains.

Throughout the paper, we make the following assumptions.
A1) A(·) andB(·) are linear operators over a suitable Hilbert

space V , with A(·) self-adjoint.
A2) Under the boundary conditions (2), the quadratic form∫

ΩA(x)x dp is bounded and coercive (i.e., positive
definite).

A third and last assumption A3 on the properties of the local
measurement function and local observability will be introduced
in Section V (to which we refer for a formal definition of local
observability and for a discussion of its implications).

An example of the above general problem is the estimation
of the temperature field x over the spatial domain of interest
given point measurements of temperature sensors. In this case,
V is usually taken as the Sobolev space H1(Ω), the measure-
ment function is simply h(x) = x, while the PDE (1) reduces to
the well known heat equation with A(x) = −∇ · (λ∇(x)) and
B(x) = α∂x/∂n + βx with α(p)β(p) ≥ 0, α(p) + β(p) >
0, ∀p ∈ ∂Ω. Here λ(p) is the thermal diffusivity, · stands for

scalar product, ∇ �
= ∂/∂p denotes the gradient operator, n is

the outward pointing unit normal vector of the boundary ∂Ω,
and ∂x/∂n = ∇x · n. Clearly, when the thermal diffusivity is
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space-independent, one has A(x) = −λ∇2(x), where ∇2 =
∇ · ∇ is the Laplacian operator.

Notice that considering homogeneous boundary conditions
as in (2) is not restrictive, since the non-homogeneous case
B(x) = g on ∂Ω can be subsumed into the homogeneous one
by means of the change of variables z = x− w, where w is any
function belonging to V and satisfying the non-homogeneous
boundary conditions.

III. CENTRALIZED FINITE ELEMENT KALMAN FILTER

In this section, it is shown how to approximate the continuous-
time infinite-dimensional system (1) into a discrete-time finite-
dimensional linear dynamical system within the FE framework,
and how, thanks to this space-time discretization, a centralized
filter for field estimation can be directly designed.

By subdividing the domain Ω into a suitable set of non over-
lapping regions, or elements, and by defining a suitable set of
basis functions φj (p) ∈ V (j = 1, . . . , n) on them, it is possi-
ble to write an approximation of the unknown function x(p, t)
as [25], [26]

x(p, t) ≈
n∑

j=1

φj (p)xj (t) = φT (p)x(t) (4)

where: xj (t) is the unknown expansion coefficient of function

x(p, t) relative to time t and basis function φj (p); φ(p)
�
=

col{φj (p)}nj=1 and x(t)
�
= col{xj (t)}nj=1 .

The choices of the basis functions φj and of the elements are
key points of the FE method. Typically, the elements (triangles
or quadrilaterals in 2D, tetrahedral or polyhedral in 3D) define
a FE mesh with vertices pj ∈ Ω, j = 1, . . . , n. Then each basis
function φj is a piece-wise polynomial which vanishes outside
the FEs around pj and such that φj (pi) = δij , δij denoting the
Kronecker delta.

In order to apply the Galerkin weighted residual method, let
the PDE (1) be recast in the following (weak) integral form

∫

Ω

∂x

∂t
ψ dp +

∫

Ω
A(x)ψ dp =

∫

Ω
f ψdp (5)

whereψ(p) is a generic space-dependent weight function. Then,
by choosing the test function ψ(p) equal to the selected basis
functions φj and exploiting the approximation (4) in (5), we get

∫

Ω

∂x

∂t
φj dp +

∫

Ω
A(x)φj dp =

∫

Ω
f φjdp j = 1, . . . , n.

Stacking (one on top of the other) the above scalar equations
into a single vector equation, yields

∫

Ω
φ
∂

∂t

(
φT x

)
dp +

∫

Ω
φA

(
φT x

)
dp =

∫

Ω
φf dp

from which, defining A(φ)
�
= col {A(φj )}nj=1 and thanks to

the linearity of operatorA(·), the usual FE weak form is obtained

[25]–[26]
[∫

Ω
φ(p)φT (p)dp

]

︸ ︷︷ ︸
M

ẋ(t) +
[∫

Ω
φ(p) [A (φ(p))]T dp

]

︸ ︷︷ ︸
S

x(t)

=
∫

Ω
φ(p)f(p, t)dp

︸ ︷︷ ︸
u(t)

.

(6)
It is evident how the first two integrals in (6) depend only on
basis functions and can be computed a priori. In particular, the
first integral yields the well known mass matrix M, while the
second depends on the operator A(·) and, in the thermal case,
is the stiffness matrix S [25]. The third integral depends on
the forcing term f , which is assumed to be known, and can
hence be computed a priori, leading to a time dependent vector
contribution u(t).

It is worth pointing out that, in the FE weak form (6), the
boundary conditions (2) can be accounted for in two different
ways [25], [26]. The so-called essential boundary conditions
are handled by imposing them on the solution, i.e., by choosing
basis functions belonging to V0 = {x ∈ V : B(x) = 0 on ∂Ω}.
On the other hand, the so-called natural boundary conditions are
directly incorporated into the weak form (5). For example, in the
case of the heat equation, the (isotherm) homogeneous Dirichlet
boundary conditions x = 0 on ∂Ω are essential, while the (adia-
batic) homogeneous Neumann boundary conditions ∂x/∂n = 0
are natural. Of course, by letting the functions α and β vary on
∂Ω, we can also have a problem with mixed essential/natural
boundary conditions. In all the cases, the resulting linear differ-
ential equation takes the form

Mẋ + Sx = u + ε (7)

where ε arises from the approximation error1 in the finite-
dimensional representation (4) of x in terms of basis functions.
Notice that M turns out to be positive definite by linear in-
dependence of the basis functions φj (·). Further, S is positive
definite as well thanks to the coercivity of the quadratic form in
the left-hand side of (5) of assumption A2. Hence the system (7)
turns out to be asymptotically stable, the state transition matrix
−M−1S being well defined and strictly Hurwitz thanks to the
positive definiteness of M and S. System (7) can be discretized
in time by different methods (e.g., backward or forward Eu-
ler integration, or the zero-order-hold method) to provide the
discrete-time state-space model

xk+1 = Axk + Buk + wk (8)

where the process noise wk has been introduced to account
for the various uncertainties and/or imprecisions (e.g. FE ap-
proximation, time discretization, and imprecise knowledge of
boundary conditions). Specifically, the backward Euler method
(here adopted for stability issues) leads to a marching in time

1 If x is sufficiently smooth, then the FE approximation error is point-wise
bounded and converges to zero as the size of the FE mesh tends to zero.
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FE implementation [27] which yields (8) with

A =
(
I + ΔM−1S

)−1
,B = AM−1Δ,

uk
�
= u((k + 1)Δ),xk

�
= x(kΔ) = col{xj (kΔ)}nj=1

where Δ denotes the time integration interval. Notice that A is
well defined for any Δ > 0 since both M and S are positive
definite.

In the following, for the sake of notational simplicity, it will be
assumed that each sampling instant is a multiple of Δ, i.e., tq =
TqΔ with Tq ∈ Z+ , and we let T = {T1 , T2 , . . .}; irregular
sampling could, however, be easily dealt with. This amounts to
assuming that the numerical integration rate of the PDE (1) in
the filter can be higher than the measurement collection rate,
which can be useful in order to reduce numerical errors. In a
centralized setting where all sensor measurements are available
to the filter, the measurement equation (3) takes the discrete-time
form

yk = h (xk ) + vk (9)

for any k = Tq ∈ T , where

yk
�
= col {yq,i}i∈S , h (x)

�
= col

{
hi

(
φT (si)x

)}
i∈S ,

vk
�
= col {vq,i}i∈S

In particular, in the case wherein all sensors directly measure
the target field x, i.e. hi(x) = x for all i ∈ S, the measurement
equation (9) turns out to be linear with h(x) = Cx, where

C = col
{
φT (si)

}
i∈S (10)

Summarizing, the original infinite-dimensional continuous-time
problem has been reduced to a much simpler finite-dimensional
(possibly large-scale) discrete time filtering problem (a linear
one provided that all sensor measurement functions are linear)
to which the Kalman filter, or extended Kalman filter when
sensor nonlinearities are considered, can be readily applied.
The resulting centralized filter recursion becomes:

x̂k |k =
{

x̂k |k−1 + Lk

(
yk − h

(
x̂k |k−1

))
if k ∈ T

x̂k |k−1 otherwise

Pk |k =
{

Pk |k−1 − LkCT
k Pk |k−1 if k ∈ T

Pk |k−1 otherwise

x̂k+1|k = Ax̂k |k + Buk

Pk+1|k = APk |kAT + Qk (11)

where

Ck =
∂h
∂x

(
x̂k |k−1

)

Lk = Pk |k−1Ck

(
Rk + CkPk |k−1CT

k

)−1
(12)

for k ∈ T . The recursion is initialized from suitable x̂1|0 and
P1|0 = PT

1|0 > 0. In (11), Qk and Rk denote the covariance
matrices of the process noise wk and, respectively, measurement
noise vk .

The following two remarks concerning optimality of the
Kalman filter and, respectively, handling of sensor nonlinearities
are in order.

Remark 1: Notice that the process noisewk in (8) arises from
the superposition of several uncertainties and/or perturbations
(including, e.g., the FE approximation of the continuous field)
so that its whiteness and uncorrelation with the initial state,
usually assumed in a stochastic framework, do not hold true
in practice. As a result, the Kalman filter algorithm (11)–(12),
even in the linear case h(x) = Cx, looses its Bayes optimality
bus still preserves deterministic least-squares optimality as the
minimizer of the following cost function

J =
(
x1 − x̂1|0

)T P−1
1|0

(
x1 − x̂1|0

)
+

k−1∑

i=1

(xi+1 − Axi)
T Q−1

i (xi+1 − Axi) +

k∑

i=1

(yi − Cxi)
T R−1

i (yi − Cxi)

Remark 2: Sensor nonlinearities, provided that the mea-
surement functions hi(·) in (3) are invertible, can be han-
dled by applying the inverse measurement functions h−1

i (·)
to the sensor outputs, i.e. by defining transformed sensor out-
puts y′q ,i = h−1

i (yq,i) and considering the transformed linear
measurement equations

y′q ,i = x (si , tq ) + v′q ,i (13)

in place of (3). This approach has the advantage of eliminating
any need for a nonlinear filter. However, while (13) is exact in
the ideal, noiseless, case i.e. when vq,i = v′q ,i = 0, it becomes
only an approximation in presence of measurement noise. In
particular, even if vq,i in (3) can be reasonably assumed to
be zero-mean, white and uncorrelated with the state x (si , tq ),
non-negligible biases and/or correlations can be induced by the
nonlinear transformation h−1

i (·) in the noise term v′q ,i appearing
in (13). For this reason, depending on the particular measure-
ment function under consideration, the use of truly nonlinear
filters can be useful also when the sensor nonlinearity is invert-
ible. For non-invertible sensor nonlinearities, nonlinear filters
such as, for instance, the extended Kalman filter for sufficiently
smooth hi(·) or the unscented Kalman filter for arbitrary hi(·),
must be used.

IV. DISTRIBUTED FINITE ELEMENT KALMAN FILTER

In order to develop a scalable distributed filter for monitoring
the target field, the idea is to run in each node m ∈ N a field
estimator for the region Ωm exploiting local measurements
ymq , information from the nodes assigned to neighboring
subdomains, as well as the PDE model (1) properly discretized
in time and space. The proposed approach takes inspiration
from the parallel Schwarz method, originally conceived
[19] for an iterative solution of boundary value problems.
Subsequently, the Schwarz method has received renewed
interest [20], [21] in connection with the parallelization of
PDE solvers.
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Fig. 1. Definition of interfaces Γm j in two different configurations with
three overlapping subdomains.

Let us define, for anym ∈ N , a partition {Γmj}j∈Nm
of ∂Ωm

(the boundary of Ωm ) such that

Γmm = ∂Ω ∩ ∂Ωm

∂Ωm =
⋃

j∈Nm

Γmj

Γmj ⊂ Ωj , ∀j �= m
Γmj ∩ Γmh = ∅, ∀j �= h

(14)

In this way, each piece Γmj of ∂Ωm for any j ∈ Nm\{m} is
uniquely assigned to node j. Notice that in the above definitions,
for each nodem,Nm indicates the in-neighborhood of nodem,
where j is called an in-neighbor of node m whenever Γmj �= ∅
(by definition, Nm includes the nodem). This clearly originates
a directed network (graph) G = (N ,L) with node set N and

link set L �
= {(j,m) ∈ N ×N : Γmj �= ∅} (see Fig. 1).

In order to describe the filtering cycle to be implemented
in node m within the sampling interval [tq , tq+1), let us as-
sume that at time t−q , before the acquisition of ymq , such a
node is provided with a prior estimate x̂mq |q−1 as the result of
the previous filtering cycles. Let δ be the time interval neces-
sary for performing a distributed prediction step consisting of
an information exchange between neighbors and a local field

prediction over a subdomain. Then, Lq
�
= (tq+1 − tq ) /δ rep-

resents the number of distributed prediction steps (equal to the
number of allowed data exchanges) in the q-th sampling in-
terval. Note that, for the sake of notational simplicity, here-
after it is supposed that tq+1 − tq is an integer multiple of δ,
i.e., Lq ∈ Z+ . Anyway, the method could easily encompass
the general case. Then, the above mentioned filtering cycle
for the proposed distributed estimation algorithm essentially
consists of:

1) Correction, i.e. incorporation (assimilation) of the last
measurement ymq into the current estimate;

2) Distributed prediction, i.e. alternate exchanges of esti-
mates with the neighborhood Nm and predictions over
the time sub-intervals [tq + (�− 1)δ, tq + �δ] for � =
1, . . . , Lq , i.e. Lq times.

The proposed Parallel Schwarz filter is detailed in Table I.
Some remarks concerning the above reported algorithm are

in order. As it can be seen from step 5, the information received
by neighboring nodes is taken into account by explicitly impos-
ing the non-homogeneous Dirichlet interface conditions (16)
on Γmj , j ∈ Nm \ {m}. Clearly, a delay is introduced in those
terms concerning neighboring nodes which makes the algorithm
well-suited for distributed computation. With this respect, it is
worth pointing out that the proposed algorithm is based on the

TABLE I
ALGORITHM 1: PARALLEL SCHWARZ FILTER

1: Given ym
q , update the prior estimate x̂m

q |q −1 into x̂m
q |q .

2: Initialize the prediction with x̂mq , 0 = x̂m
q |q and x̂mq ,−1 = x̂m

q |q .

3: for � = 1, . . . , Lq do
4: Exchange data with the neighborhood; specifically send to neighbor j the data

x̂mq , �−1 concerning the sub-boundary Γj m ⊂ ∂Ω j , and get from neighbor j the

data x̂jq , �−1 concerning the sub-boundary Γm j ⊂ ∂Ωm .
5: Solve the problem

x̂mq , � − x̂mq , �−1

δ
+ A

(
x̂mq , �

)
= fq , � in Ωm (15)

subject to the Dirichlet boundary conditions
x̂mq , � = x̂jq , �−1 on Γm j ∀j ∈ Nm \{m} (16)

and the linear boundary conditions
B(x̂mq , � ) = 0 on Γm m (17)

where fq , � (p) � f (p, tq + �δ).
6: end for
7: Set x̂m

q + 1 |q = x̂mq , L q for the next cycle.

parallel Schwarz method for evolution problems, which, as well
known, enjoys nice convergence properties to the centralized so-
lution as the time discretization step δ tends to zero [20]–[21].
Hence, it seems a sensible and promising approach to spread
the information through the network.

A. Implementation via the Finite-Element Method

In practice, the algorithm, and in particular the solution of
the boundary value problem (15)–(17), has to be implemented
via a finite dimensional approximation. In particular, we follow
the same approach described in Section III for the centralized
case by constructing a FE mesh for the global domain Ω, and
then decomposing such a grid into N possibly overlapping
sub-meshes, according to the domain decomposition. For the
sequel, it is important to distinguish vertices lying on the
boundary between neighbors (interface) from the other vertices
of the subdomain. To this end, let int(S) denote the interior
of a generic set S. Then, we introduce the sets of indices

Im
�
= {i : pi ∈ int(Ωm ) ∪ Γmm} and Imj

�
= {i : pi ∈

Γmj} of the basis functions corresponding to internal and,
respectively, interface vertices of subdomain Ωm . In particular,

let xm
�
= col{xi : i ∈ Im}, m = 1, . . . , N , denote the vector

of field values in vertices belonging to int(Ωm ) ∪ Γmm , i.e.
the internal state of subsystem m. Then, it is possible to extract
from (7) the rows relative to states xm so that

Mmm ẋm +
∑

j∈Nm \{m}
Mmj ẋj + Smmxm

+
∑

j∈Nm \{m}
Smjxj = um + εm (18)

where the matrices Mmj and Smj take into account the
contribution of state variables in vertices pj ∈ Γmj , and εm

accounts for the approximation error in the finite-dimensional
representation (4) of x in terms of basis functions. Notice
that both Mmm and Smm are positive definite because so
are M and S. As a result, the ODE (7) can be written as the
interconnection of N subsystems of the form (18).
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Each of the subsystems (18) can be discretized in time in the
interval [tq , tq+1] using a modified backward Euler technique
wherein a delay is introduced in those terms concerning neigh-
boring nodes, so that at time tq + �δ we obtain the following
discrete-time linear descriptor system

Mmm

(
xmq,�+1 − xmq,�

δ

)

+ Smm xmq,�+1

+
∑

j∈Nm \{m}

[

Mmj

(
xjq ,� − xjq ,�−1

δ

)

+ Smj xjq ,�

]

= umq,�+1 + εmq,�+1 + τm
q,� (19)

where xmq,�
�
= xm (tq + �δ), for � = 1 . . . , Lq , and τm

q,� de-
notes the time discretization error at time tq + �δ. The recursion
(16) is initialized at time tq by setting

xmq,0 = xm (tq ),
xjq ,0 = xj (tq ), xjq ,−1 = xj (tq ), j ∈ Nm \ {m} (20)

The well-posedness of the discretization scheme resulting from
(19)–(20) will be analyzed in Section IV-B.

It can be readily seen that such a hybrid Euler time discretiza-
tion implements the Parallel Schwarz method, described earlier.
In fact, it is equivalent to approximate x in Ωm at time tq + �δ
as

x(p, tq + �δ) ≈
∑

i∈Im

φmi (p)xm,i
q ,� (21)

+
∑

j∈Nm \{m}

∑

i∈Im j

φji (p)xj,iq ,�−1

which in turn corresponds to explicitly imposing non-
homogeneous Dirichlet interface conditions on Γmj , j ∈ Nm \
{m}, taken from neighboring nodes (like in (16)).

Thanks to the positive definiteness of Mmm and Smm , each
discretized-model (19) can be easily transformed into a state-
space model of the form

xmq,� = Amxmq,�−1 +
∑

j∈Nm \{m}
Amj x̂jq ,�−1 (22)

+
∑

j∈Nm \{m}
Āmjxjq ,�−2 + Bmumq,� + wm

q,�

where

Am = (Mmm + δSmm )−1 Mmm

Amj = (Mmm + δSmm )−1 (
−δSmj − Mmj

)

Āmj = (Mmm + δSmm )−1 Mmj

Bm = (Mmm + δSmm )−1 δ

and wm
q,� = (Mmm + δ Smm )−1δ

(
ε̃mq,�+1 + τm

q,�

)
is the error

combining the effects of both spatial and temporal discretiza-
tions.

Such interconnected models can be exploited so as to derive
a FE approximation of the distributed-state estimation algo-
rithm with Parallel Schwarz method (Algorithm 1 in Table I).

TABLE II
ALGORITHM 2: DISTRIBUTED FINITE-ELEMENT KALMAN FILTER

1: Given ym
q , update the prior estimate x̂m

q |q −1 and covariance Pm
q |q −1 into x̂m

q |q and
Pm
q |q as follows

x̂m
q |q = x̂m

q |q −1 + Lm
q

(
ym
q − hm

(
x̂m
q |q −1

))

Pm
q |q = Pm

q |q −1 − Lm
q (Cm

q )T Pm
q |q −1

Cm
q =

∂hm

∂x

(
x̂m
q |q −1

)

Lm
q = Pm

q |q −1 Cm
q

(
Rm

q + Cm
q Pm

q |q −1 (Cm
q )T

)−1

where hm � col {hi : si ∈ Ωm } denote the local measurement function at
node m .

2: Initialize the distributed prediction with x̂m
q , 0 = x̂m

q |q ,P
m
q , 0 = Pm

q |q and
x̂m
q ,−1 = x̂m

q |q ,P
m
q ,−1 = Pm

q |q .

3: for � = 1, . . . , Lq do
4: Exchange data with the neighborhood; specifically send to neighbor j the

estimates x̂m
q , �−1 concerning the sub-boundary Γj m ⊂ ∂Ω j , and get from

neighbor j the estimates x̂j
q , �−1 concerning the sub-boundary Γm j ⊂ ∂Ωm .

5: set
x̂m
q , � = Am x̂m

q , �−1 +
∑

j ∈Nm \{m }
Am j x̂j

q , �−1

+
∑

j ∈Nm \{m }
Ām j x̂j

q , �−2 + Bm um
q , � (23)

Pm
q , � = γ 2 Am Pm

q , �−1 (Am )T + Qm (24)

with γ > 1.
6: end for
7: Set x̂m

q + 1 |q = x̂m
q , L q

and Pm
q + 1 |q = Pm

q , L q
for the next cycle.

In particular, the numerical solution of (15)–(17) takes the
form of the local one-step-ahead predictor for model (22)
at time tq + (�− 1)δ, whereas the correction step of the
local filtering cycle is the usual (extended) Kalman fil-
ter update step for the local subsystem. The resulting dis-
tributed finite-element (extended) Kalman filter is reported
in Table II.

As previously shown, the additional terms∑
j∈Nm \{m} Amj x̂jq ,�−1 and

∑
j∈Nm \{m} Āmj x̂jq ,�−2 in

equation (22) arise from the non-homogeneous Dirichlet
boundary conditions (16). In this respect, it is worth noting that
the matrices Amj and Āmj are sparse since only the compo-
nents of the neighbor estimates x̂jq ,�−1 and x̂jq ,�−2 concerning
the sub-boundary Γmj are involved. The positive real γ > 1 is
a covariance boosting factor whose role, as will be discussed
in the stability analysis of the distributed FE-KF, is that of
guaranteeing convergence of the estimates. The covariance
boosting factor is also necessary in order to compensate for the
additional uncertainty associated with the boundary conditions
at the interfaces, i.e., for the uncertainty associated with the es-
timates

∑
j∈Nm \{m} Amj x̂jq ,�−1 and

∑
j∈Nm \{m} Āmj x̂jq ,�−2 .

In fact, such an uncertainty is not explicitly accounted for in
(24) due to the fact that the correlation between the estimates
of neighboring nodes is not precisely known. The interested
reader is referred to [14] for additional insights on this
issue in the context of distributed estimation of large-scale
interconnected systems. As in the centralized context, the
positive definite matrix Qm accounts for the various uncer-
tainties and imprecisions (i.e., discretization errors, imprecise
knowledge of the exogenous input f and of the boundary
conditions (17)).
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B. Numerical Stability

As previously shown, in the FE-based implementation the
Parallel Schwarz step amounts to performing a hybrid Euler
discretization on the interconnection of the N subsystems (18).
Hence, as a preliminary analysis step, it is important to verify
the well-posedness of such a modified discretization method
in terms of numerical stability (i.e., in terms of bounded-
ness and convergence of the time-discretization errors). To this
end, it is convenient to consider the global dynamics of the
interconnection.

Let us consider the augmented global state x̃
�
=

col{xm , m = 1, . . . , N}, which clearly contains repeated com-
ponents of the state due to the possibly overlapping nature of the
decomposition. Let the vectors ũ and ε̃ be defined in a similar
way. In terms of x̃ the interconnection of the N subsystems of
the form (18) gives rise to a global augmented system which
obeys the following continuous-time linear dynamics

M̃ ˙̃x + S̃ x̃ = ũ + ε̃ (25)

Note that the only difference between (7) and (25) is the presence
of duplicated states in the latter linear ODE. Nevertheless, the
two systems originate an identical state evolution. According
to the divide-and-conquer strategy, matrices M̃ and S̃ can be
decomposed as

M̃ = M̃D + M̃F (26)

S̃ = S̃D + S̃F (27)

with M̃D = block-diag(M11 , . . . ,MNN ), S̃D =
block-diag(S11 , . . . ,SNN ), whereas M̃F and S̃F take
into account the FE interconnection structure among neigh-
boring subsystems. By substituting (26)–(27) into (25), one
obtains

M̃D
˙̃x + S̃D x̃ + M̃F

˙̃x + S̃F x̃ = ũ + ε̃ . (28)

Then, by applying the hybrid Euler time discretization (19), the
time-discretized augmented system takes the form

M̃D

(
x̃q ,�+1 − x̃q ,�

δ

)

+ S̃D x̃q ,�+1 + M̃F

(
x̃q ,� − x̃q ,�−1

δ

)

+ S̃F x̃q ,� = ũq ,�+1 + ε̃q ,�+1 + τ q ,� (29)

for � = 0, . . . , Lq − 1, where x̃q ,�
�
= x̃(tq + �δ), and, as previ-

ously, τ q ,� denotes the time discretization error at time tq + �δ.
Further, the initialization (20) can be simply rewritten as

x̃q ,0 = x̃q ,−1 = x̃(tq ) (30)

The following result can now be stated which summarizes the
numerical stability properties2 of (29)–(30).

Theorem 1: The hybrid Euler time-discretization scheme
(29)–(30) is consistent with local truncation error of order 1.
Further, it is zero-stable provided that the following condition

2 The interested reader is referred to chapter 12 of [31] for an introduc-
tion on the concepts of consistency, zero-stability, and convergence of time-
discretization methods.

holds

ρ(M̃−1
D M̃F ) < 1 (31)

where ρ(·) denotes the spectral radius.
Proof: Let D denote the differential operator in the left-hand

side of (28), i.e.,

D(ξ, t) = M̃D ξ̇(t) + S̃D ξ(t) + M̃F ξ̇(t) + S̃F ξ(t)

for any smooth time-function ξ. Further, let Dδ denote the
discrete-time operator in the left-hand side of (29), i.e.,

Dδ (ξ, t) = M̃D

(
ξ(t+ δ) − ξ(t)

δ

)

+ S̃D ξ(t+ δ)

+ M̃F

(
ξ(t) − ξ(t− δ)

δ

)

+ S̃F ξ(t) .

As well known, the time-discretization scheme (29) is con-
sistent when, for any smooth time-function ξ and for any
time t, Dδ (ξ, t) converges to D(ξ, t) as δ goes to 0. By
taking the Taylor expansion of ξ in t, we can write ξ(t+
δ) = ξ(t) + δ ξ̇(t) + δ2 ξ̈(t) +O(δ3) and ξ(t− δ) = ξ(t) −
δ ξ̇(t) + δ2 ξ̈(t) +O(δ3). Hence, after some algebra, we have

Dδ (ξ, t) = D(ξ, t) + M̃D δ ξ̈(t) + S̃D δ ξ̇(t) − M̃F δ ξ̈(t)

+O(δ2)

which shows that the scheme is consistent and the local trunca-
tion error has order 1.

In order to study zero-stability, we start by considering the
limit for δ going to zero of the time-difference equation (29),
which is given by

M̃D (x̃q ,�+1 − x̃q ,�) + M̃F (x̃q ,� − x̃q ,�−1) = 0 . (32)

In fact, zero-stability of the time-discretization scheme (29) cor-
responds to the neutral stability of the discrete-time system (32)
(recall that system (32) is neutrally stable when its trajectories
remain bounded as � goes to infinity for any initial condition).
Then the proof can be concluded by noting that, by defining
ζq ,�+1 = x̃q ,�+1 − x̃q ,� , system (32) can be rewritten as

[
x̃q ,�+1
ζq ,�+1

]

=
[
I −M̃−1

D M̃F

0 −M̃−1
D M̃F

] [
x̃q ,�
ζq ,�

]

which is neutrally stable if and only if condition (31) holds. �
Recall that, in view of the Dahlquist’s Equivalence Theorem,

zero-stability is necessary and sufficient for convergence of a
consistent time-discretization scheme [31]. Hence, under con-
dition (31), the hybrid Euler time-discretization scheme (19)
turns out to be convergent. For instance, this means that in each
interval [tq , tq+1] the predicted estimates obtained via the Par-
allel Schwarz step (23) converge to the solution of a centralized
prediction equation of the form

M̃ ˙̂x + S̃ x̂ = ũ

as the time-discretization step δ goes to 0, or equivalently as the
number Lq of distributed prediction steps goes to infinity.

Remark 3: It is worth noting that (31) translates into a block
diagonal dominance condition for the global system, which re-
quires that the effect of the isolated subsystems on the state
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evolution prevails over the effect originated from the intercon-
nections among subsystems. Taking into account the particular
structure of the FE mass matrix M, which is reflected in the
sparse structure of M̃, the numerical stability condition (31) is
usually satisfied in practice (see, for instance, the simulation ex-
ample of Section VI). In addition, in the unlikely case in which
condition (31) does not hold, it is possible to modify the hybrid
Euler time-discretization scheme (29) (and hence the imple-
mentation of the Parallel Schwarz step) so as to retrieve zero-
stability. Specifically, by introducing a suitable scalarω ∈ (0, 1],
one can replace (29) with

M̃D

(
x̃q ,�+1 − (2 − ω) x̃q ,� + (1 − ω) x̃q ,�−1

ω δ

)

+ S̃D x̃q ,�+1 + M̃F

(
x̃q ,� − x̃q ,�−1

δ

)

+ S̃F x̃q ,�

= ũq ,�+1 + ε̃q ,�+1 + τ q ,� (33)

which is still well-suited for distributed implementation. Notice
that such a modified scheme coincides with (29) for ω = 1.
Further, along the lines of Theorem 1, it is possible to show that
(33) is consistent for any value of ω ∈ (0, 1], and zero-stable
provided that

ρ(ω M̃−1
D M̃F − (1 − ω) I) < 1 . (34)

In turn, since

ρ(ω M̃−1
D M̃F − (1 − ω) I) ≤ max{ω ρ(M̃−1

D M̃F ), 1 − ω}

for any ω ∈ (0, 1], condition (34) can be always satisfied for
suitably small values of ω even when condition (31) does not
hold. The price to be paid for the improved numerical stability
is a slow-down of the information spread.

V. STABILITY ANALYSIS

In this section, the stability of the estimation error dynam-
ics resulting from application of the distributed finite-element
Kalman filter of Algorithm 2 (Table II) is analyzed by suppos-
ing the measurement equation in each domain to be linear (as it
happens when the sensors directly measure the target field like
in (10)). Further, in order to simplify the notation, the interval
tq+1 − tq between consecutive measurements is supposed to
be constant, so that in each sampling interval [tq , tq+1) a fixed
number L of distributed prediction steps is performed. With this
respect, we make the following assumption.

A3) For each m ∈ N , the local measurement function is
linear, i.e., hm (xm ) = Cmxm . Further, local observ-
ability holds in the sense that the pair ((Am )L ,Cm ) is
observable for any m ∈ N .

A set of sensors ensuring local observability in each do-
main ensures also global observability (i.e., observability of
the global state vector given all the measurements). However,
the converse need not hold in that local observability requires a
sufficient number of sensors to be present in each subdomain.
Nevertheless, under global observability, the local observability
condition can be satisfied by choosing each subdomain large
enough so that a sufficient number of sensors is included inside.

Recalling that the matrices Am arise from space-time discretiza-
tion of a PDE, some comments on how the local observability
assumption A3 maps to the original continuous field are impor-
tant. In this respect, while the relationship between observabil-
ity of a continuous field and of its space-time discretization is
far from trivial [32], [33], the following considerations can be
made: i) from the practical point of view, unless the domain Ω
has a very specific form, the exact observability of the original
PDE solution cannot be directly checked, and one invariably
needs to resort to some numerical approximation scheme [32]
like the one considered here; ii) on the other hand, it has been
proved that, for a convergent discrete approximation scheme,
the observability of the discrete numerical model is sufficient
(and necessary) for the stability of the related field estimation
process (see [32] for a formal statement of this property); iii)
finally, it has been recently shown [33] that quantitative ob-
servability measures, defined in terms of suitable observability
Gramians, carry over in a consistent way from the original PDE
to its space-time discretization for any convergent numerical
approximation scheme.

Let us first rewrite (29) into the state-space form

x̃q ,�+1 =
(
M̃D + δS̃D

)−1
M̃D

︸ ︷︷ ︸
ÃD

x̃q ,�

+
(
M̃D + δS̃D

)−1 (
−δS̃F − M̃F

)

︸ ︷︷ ︸
ÃF

x̃q ,�

+
(
M̃D + δS̃D

)−1
M̃F

︸ ︷︷ ︸
ĀF

x̃q ,�−1

+
(
M̃D + δS̃D

)−1
δ

︸ ︷︷ ︸
B̃

ũq ,�+1 + w̃q ,� (35)

where, clearly, ÃD = block-diag(A1 , . . . ,AN ) is the block
diagonal matrix of state transition matrices, representing the N
isolated subsystems.

Recalling that, in each interval [tq , tq+1), the recursion (35)
is initialized with the initial conditions (30), it can be easily
noticed that at the last distributed prediction step � = L one
obtains

x̃q ,L = ÃL
D x̃q ,0 + ÃF,L x̃q ,0 + B̃LŨq + D̃LW̃q (36)

where Ũq
�
= col{uq ,� , � = 1, . . . , L}, W̃q

�
= col{wq ,� , � =

1, . . . , L} and B̃L , D̃L , ÃF,L are suitable matrices with the
latter defining the interconnection couplings between subsys-
tems. Noting that, by definition, x̃q ,L = x̃q+1,0 = x̃(Tq+1Δ),
the latter equation can be rewritten as

x̃q+1 = ÃL
D x̃q + ÃF,L x̃q + B̃LŨq + D̃LW̃q (37)

where x̃q
�
= x̃(TqΔ).
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Similarly, application of step 3 of Algorithm 2 yields, at the
last distributed prediction step � = L,

x̂q ,L = ÃL
D x̂q ,0 + ÃF,L x̂q ,0 + B̃LŨq . (38)

where x̂q ,�
�
= col{x̂mq,� , m ∈ N}. Further, by defining x̂q |q

�
=

col{x̂mq |q , m ∈ N} and x̂q |q−1
�
= col{x̂mq |q−1 , m ∈ N}, the

global correction step of Algorithm 2 at time tq+1 can be written
as

x̂q+1|q+1 = x̂q+1|q + L̃q+1(ỹq+1 − C̃ x̂q+1|q ) (39)

where ỹq+1
�
= col{ymq+1 , m ∈ N}, L̃q+1 = block-diag

(L1
q+1 , . . . ,L

N
q+1), and C̃

�
= col{Cm , m ∈ N}.

Recalling that x̂q ,L = x̂q+1|q and x̂q ,0 = x̂q |q , equations (38)
and (39) can be easily combined so as to write x̂q+1|q+1 as
a function of x̂q |q and thus obtain a recursive expression for
the global estimate. In addition, noting that the global output

vector can be written as ỹq+1 = C̃x̃q+1 + ṽq+1 with ṽq+1
�
=

col{vmq+1 , m ∈ N}, we can also write a recursive expression

for the dynamics of the global estimation error ẽq
�
= col{x̃q −

x̂q |q , m ∈ N}. Specifically, standard calculations yield

ẽq+1 =
(
I − L̃q+1C̃

)(
ÃL
D + ÃF,L

)
ẽq + ν̃q (40)

where the term ν̃q = (I − L̃q+1C̃)D̃LW̃q + ṽq+1 accounts for
the time-space discretization errors, for the measurement noise,
and for all the other possible uncertainties.

As for the time evolution of the global covariance matrix

P̃q |q
�
= block-diag(P1

q |q , . . . ,P
N
q |q ), with similar reasoning as

above it is an easy matter to see that application of Algorithm 2
leads to the following recursion

P̃q+1|q+1 =
(
I − L̃q+1C̃T

)
P̃q+1|q

(
I − L̃q+1C̃T

) [
γ2LÃL

D P̃q |q (ÃL
D )T + Φ̃

]

(41)

where Φ̃
�
=

∑L−1
i=0 γ

2iÃi
D Q̃(Ãi

D )T and Q̃
�
=

block-diag(Q1 , . . . ,QN ).
The following stability result can now be stated.
Theorem 2: Let assumptions A1-A3 hold and let the matri-

ces Q̃ and R̃
�
= block-diag(R1 , . . . ,RN ) be positive definite.

Then, the global covariance matrix asymptotically converges to
the unique positive solution P̃(γ) of the algebraic Riccati equa-
tion

[P̃(γ)]−1 =
[
γ2LÃL

D P̃(γ)(ÃL
D )T + Φ̃

]−1
+ C̃T R̃−1 C̃,

and the global Kalman gain converges to the steady-state value

L̃(γ) =
[
γ2LÃL

D P̃(γ)(ÃL
D )T + Φ̃

]
C̃T

×
{
C̃

[
γ2LÃL

D P̃(γ)(ÃL
D )T + Φ̃

]
C̃T + R̃

}−1
. (42)

Then, the dynamics (40) of the estimation error is exponentially
stable if and only if

ρ
{[

I − L̃(γ)C̃
] (

ÃL
D + ÃF,L

)}
< 1 . (43)

Proof: Notice first that assumption A2 implies observability
of the pair (ÃL

D , C̃) which, as it can be easily verified through the
PBH test, also implies observability of (γLÃL

D , C̃) for any real
γ > 0. Then, the convergence of P̃q |q to P̃(γ) > 0 follows from
well known results on discrete-time Kalman filtering, since (41)
is the standard Kalman filter covariance recursion for a linear
system with state matrix γLÃL

D and output matrix C̃.
Further, it is immediate to see that the gain L̃(γ) de-

fined in (42) is the steady-state global Kalman gain asso-
ciated with the steady-state covariance P̃(γ). Notice finally

that the matrix
(
I − L̃q+1C̃

)(
ÃL
D + ÃF,L

)
, which deter-

mines the dynamics of the estimation error, exponentially

converges to
[
I − L̃(γ)C̃

] (
ÃL
D + ÃF,L

)
, so that the esti-

mation error dynamics is exponentially stable if and only if[
I − L̃(γ)C̃

] (
ÃL
D + ÃF,L

)
is Schur stable, i.e., if and only if

condition (43) is satisfied. �
In practice, the design of the proposed distributed finite-

element Kalman filter requires the tuning of the scalar parameter
γ. Specifically, for any given value of γ the stability of the filter
can be readily checked by means of condition (43). Then, the
tuning of γ can be performed numerically by finding, among
the values of γ satisfying the stability condition (43), the one
yielding the best estimation accuracy (see Fig. 9 in Section VI
for an illustration of these ideas in a specific case study).

In order to understand the role played by the scalar γ in the
satisfiability of condition (43) the following result is helpful.

Proposition 1: A sufficient condition for (43) to hold is that
the scalar γ satisfies the relationship

γL >

∥
∥
∥
∥I +

(
ÃL
D

)−1
ÃF,L

∥
∥
∥
∥

P̃(γ )
, (44)

where ‖ · ‖M denotes the matrix norm induced by the vector

norm ‖x‖M
�
=

√
xT Mx.

Proof: With standard manipulations, it can be seen that L̃(γ)
and P̃(γ) satisfy the relationship

P̃(γ) = [I − L̃(γ)C̃T ]
[
γ2LÃL

D P̃(γ)(ÃL
D )T + Φ̃

]

× [I − L̃(γ)C̃T ]T + L̃(γ)R̃[L̃(γ)]T

so that

[I − L̃(γ)C̃T ]
[
γ2LÃL

D P̃(γ)(ÃL
D )T

]
[I − L̃(γ)C̃T ]T ≤ P̃(γ)

and, hence,

∥
∥
∥[I − L̃(γ)C̃T ]ÃL

D

∥
∥
∥

P̃(γ )
≤ 1/γL . (45)
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Hence, in order to complete the proof, it is sufficient to observe
that
∥
∥
∥
[
I − L̃(γ)C̃

] (
ÃL
D + ÃF,L

)∥
∥
∥

P̃(γ )

≤
∥
∥
∥
∥

[
I − L̃(γ)C̃

]
ÃL
D

∥
∥
∥
∥

P̃(γ )

∥
∥
∥
∥I +

(
ÃL
D

)−1
ÃF,L

∥
∥
∥
∥

P̃(γ )

≤
∥
∥
∥
∥I +

(
ÃL
D

)−1
ÃF,L

∥
∥
∥
∥

P̃(γ )
/γL

where the latter inequality follows from (45). In fact, this im-

plies
∥
∥
∥
[
I − L̃(γ)C̃

] (
ÃL
D + ÃF,L

)∥
∥
∥

P̃(γ )
< 1 and hence (43)

whenever (44) holds. �
It can be seen from (44) that the smaller is ÃF,L (the part

of the dynamics due to interaction between subdomains) as
compared to ÃL

D (the local dynamics in the subdomains), the
easier it becomes to achieve stability. In fact, in the limit case
of no interaction (ÃF,L = 0) the condition is satisfied for any
γ > 1. In this respect, it is worth pointing out that the quantity
(
ÃL
D

)−1
ÃF,L is usually small because of the structure of the

FE matrices and the fact that the interactions are limited to
the interfaces. For instance, in the case study of Section VI
stability of the filter is guaranteed for a wide range of values of
γ. Nevertheless, in general it is not possible to guarantee that a
value of γ satisfying (44), or (43), always exists. This state of
affairs can be understood by noting that in (44) both the left-
hand and the right-hand side increase with γ. In case a suitable
γ cannot be found, the stability of the filter can be guaranteed
by resorting to a slight modification of the proposed approach
which is summarized in the following procedure:

1) select the time interval δ so that the dynamics of (37) is
asymptotically stable;

2) pick any γ > 1 (for example, by minimizing, the left-
hand side of (43));

3) find a scalar κ > 0 such that

ρ
{[

I − κ L̃(γ)C̃
] (

ÃL
D + ÃF,L

)}
< 1 ; (46)

4) modify the correction step (39) as follows

x̂q+1|q+1 = x̂q+1|q + κ L̃q+1(ỹq+1 − C̃ x̂q+1|q ) . (47)

Notice that the stability of (37), obtained from time-
discretization of the asymptotically stable system (7), can be pre-
served by making δ suitably small when the time-discretization
scheme is zero-stable (a property which either holds when (31)
is satisfied or can be enforced by means of the arrangements
of Remark 1). Further, under stability of (37), condition (46)
can be always satisfied as well for suitably small values of κ.
The idea is that the gain of the local Kalman filters should not
be too large so that stability is preserved. Hence, in the con-
sidered setting, the above-reported procedure is guaranteed to
succeed. Finally, it is an easy matter to verify that, under con-
dition (46), the distributed finite-element Kalman filter with the
modified correction step (47) leads to an asymptotically stable
estimation error dynamics (the proof is analogous to the one
of Theorem 2).

As a final remark, we point out that, once the original filter-
ing problem has been recast in the form (38)–(39), the problem
of designing the filter gains falls within the wider framework
of partition-based distributed Kalman filtering (see [34] and
the reference therein for an insight on this problem). The pro-
posed solution has the advantage of requiring the tuning of one
(or few) scalar quantities and hence is well-suited to keeping
the computational load manageable even when the state vector
has a large dimension (as it usually happens in the context of
field estimation). Further, the proposed approach requires that
only the estimates pertaining to the interfaces are exchanged
between neighboring nodes, thus keeping the communication
requirements as low as possible.

VI. SIMULATION EXPERIMENTS

This section provides numerical examples and relative re-
sults illustrating the effectiveness of the proposed distributed
finite element Kalman filter presented in Section IV. Con-
sider the transient heat conduction problem, introduced in
Section II as a particular example of (1), in a thin polyg-
onal metal plate with constant, homogeneous, and isotropic
properties. Assuming that the thickness of the slab is con-
siderably smaller than the planar dimensions, then the tem-
perature can be assumed to be constant along the width
direction, and the problem is reduced to two dimensions.
Hence, the diffusion process in a thin plate is modelled by
the 2D parabolic PDE ∂x/∂t− λ

(
∂2x/∂ξ2 + ∂2x/∂η2

)
=

0 with boundary condition B(x) = α(ξ, η) ∂x/∂n + β(ξ, η)x
such that α(ξ, η)β(ξ, η) ≥ 0, α(ξ, η) + β(ξ, η) > 0, ∀(ξ, η) ∈
∂Ω. Notice that, x(ξ, η, t) denotes the temperature as a
function of time t and spatial variables (ξ, η) ∈ Ω, f =
0 stands for no inner heat-generation, whereas λ = 1.11 ×
10−4 [

m2/s
]

is the thermal diffusivity of copper at 25 [◦C]
(Table XII, Appendix 2 in [35]), assumed to be constant in time
and space.

A network of S = 23 sensors (Fig. 2) located in the known
positions si = [ξi, ηi ]

T is assumed to collect point tempera-
ture measurements at regularly time-spaced instants tq = q Ts ,
with Ts = 100 [s] and standard deviation of measurement noise
σv = 0.1 [K]. The considered sensor network has been chosen
to guarantee local observability (assumption A2).

The Matlab PDE Toolbox is used to generate the trian-
gular mesh (252 vertices, 436 elements) shown in Fig. 2 of
size b = 0.2[m] (defined as the length of the longest edge
of the element), over the global 2D domain Ω. Next, as can
be seen from Fig. 2, the domain under consideration is de-
composed into N = 8 overlapping subdomains Ωm , i.e. N =
{1, . . . , 8}, each being assigned to a node with local process-
ing and communication capabilities. It is worth pointing out
that domain decomposition comes with an appropriate parti-
tioning of the original global mesh so that the resulting lo-
cal grids actually match on the regions of overlap between
subdomains.

Domain triangulation allows for a simple construction of ba-
sis functions {φj (ξ, η)}nj=1 , which are continuous piecewise
polynomial functions, such that their value is unity in vertex j
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Fig. 2. Global FE mesh (grid of solid lines) generated over Ω and
domain decomposition into 8 overlapping subdomains (dashed poly-
gons). The position of each sensor is denoted by ∗.

and vanishes at the remaining vertices, i.e.

φj (ξi, ηi) =
{

1 if i = j i, j = 1, 2, . . . , n
0 if i �= j

Here we use continuous piecewise linear functions defined on
each element as ψE(ξ, η) = c0 + c1ξ + c2η with (ξ, η) ∈ E and
c0 , c1 , c2 ∈ IR, so that each function is uniquely determined by
its three nodal values xi = ψE(ξi, ηi), i ∈ E .

Basis functions are used off-line by the FE centralized filter
and in the distributed setup for the element-by-element con-
struction of matrices S and M, introduced in (6). Then, the
state dynamics of the centralized filter can be directly com-
puted, whereas local estimators first need to extract matrices
Mmm ,Smm and Mmj , Smj in order to calculate Am ,Amj

and Āmj which finally provide the finite-dimensional model
of temperature evolution in Ωm through (22). Notice that these
matrices are evaluated for a fixed sampling interval δ = Ts/L,
where L denotes the number of distributed prediction iterations
Lq introduced in Section IV, here assumed constant in each
sampling interval q. For a fair comparison between centralized
and distributed approaches, a constant time integration interval
Δ = 10 [s] has been chosen for the centralized filter.

Notice that, being {φj (ξ, η)}nj=1 functions with a small
support defined by the set of triangles sharing node j, the
resulting mass and stiffness matrices will be sparse, with the
same pattern shown in Fig. 3(a). In Fig. 3(b) it can be seen how
the structure of the stiffness matrix changes when considering
the augmented system (25). The distributed pattern of the
networked system is highlighted in Fig. 4, where ÃD represents
each subsystem as isolated, though affected by the evolution of
neighbors through ÃF .

In the following experiments, both FE filters assume the initial
temperature field of the plate uniform at x0(ξ, η) = 300 [K], and
the a-priori estimate taken as first guess x̂1|0(ξ, η) = 305 [K],
with diagonal covariance P1|0 = 20 I. Moreover, a zero-mean

Fig. 3. Sparsity pattern of 252 × 252 matrix S (a), and 286 × 286 matrix
S̃ = S̃D + S̃F (b). (a) S: 1626 nonzero elements, (b) S̃D : 1632 nonzero
elements (red); S̃F : 223 nonzero elements (blue).

Fig. 4. Sparsity pattern of ÃD (red) and ÃF (black).

white noise process has been assumed, with covariance Q =
σ2
w I, where σw = 3 [K]. Taking into consideration model un-

certainty, the ground truth of the experiments is represented by a
real process simulator implementing a finer mesh (915 vertices,
1695 elements) of size b = 0.1 instead of b = 0.2, running at
a higher sampling rate (1 Hz), and aware of the possibly time-
varying boundary conditions of the system. On the other hand,
both distributed and centralized filters have no knowledge of
the real system boundary conditions, so they simply assume the
plate adiabatic on each side.

The performance of the novel distributed FE Kalman filter has
been evaluated in terms of Root Mean Square Error (RMSE) of
the estimated temperature field, averaged over a set of about 300
sampling points uniformly spread within the domain Ω, and 500
independent Monte Carlo realizations.

VI. Scenario 1

In the first example, transient analysis is performed on a thin
adiabatic L-shaped plate (seen in Fig. 2) with a fixed temperature
along the bottom edge. This is a problem with mixed boundary
conditions, namely a non-homogeneous Dirichlet condition on
the bottom edge of the plate ∂Ω1 , i.e.

x = T1 on ∂Ω1 , (48)
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Fig. 5. Scenario 1: Comparison of performance of centralized and dis-
tributed FE-KF (γ = 1.1).

Fig. 6. Scenario 1: True (left) and estimated (cFE-KF, center – dFE-
KF, right) temperature fields in Kelvin (K) at time steps q = 50 (top) and
q = 200 (bottom).

where T1 = 315 [K], and natural homogeneous Neumann
boundary conditions on the remaining insulated sides ∂Ω2 =
∂Ω \ ∂Ω1 , so that

∂x/∂n = 0 on ∂Ω2 . (49)

The duration of each Monte Carlo run is fixed to 3 × 104 [s]
(300 samples). Fig. 5 illustrates the performance comparison
between centralized (cFE-KF) and distributed (dFE-KF) filters
for γ = 1.1 and for three different values of the parameter L
adopted in the distributed framework. First of all, it can be seen
that both FE algorithms succeed in reconstructing the true field
of the system based on fixed, point-wise temperature observa-
tions. Moreover, the performance of the distributed FE filters is
very close, even forL = 1, to that of the centralized filter, which
collects all the data in a central node. Last but not least, in the
distributed setting the RMSE behaviour improves by increasing
the number L of distributed prediction steps. This is true for
certain values of γ, whereas for others the difference in perfor-
mance is considerably reduced, as clearly presented in Fig. 9.
Note that the covariance boosting factor used in (24) is set to
γL = L

√
γ, ∀L = 1, 2, 10, in order to obtain a fairly compara-

ble effect of covariance inflation after L distributed prediction
steps for different distributed filters. Further insight on the per-
formance of the proposed FE estimators is provided in Fig. 6,

Fig. 7. Scenario 2: Comparison of performance of centralized and dis-
tributed FE-KF (γ = 1.1).

which shows the true and estimated temperature fields at two
different time steps q = 50 and q = 200, obtained in a single
Monte Carlo experiment by using cFE-KF and dFE-KF with
L = 10.

VI. Scenario 2

In the second experiment, two time-varying disturbances
have been added in order to test the robustness of the pro-
posed FE estimators in a more challenging scenario. To this
end, different boundary conditions are considered. Specifically,
a time-dependent Dirichlet condition (48) with T1 = 310 [K]
for time steps q ∈ {0, . . . , 299}, and T2 = 320 [K] for q ∈
{300, . . . , 1000}, is set on all nodes of the bottom edge ∂Ω1 .
The top edge of the plate ∂Ω3 is first assumed adiabatic for
q ∈ {0, . . . , 699}, then the inhomogeneous Robin boundary
condition

λ ∂x/∂n + ν x = ν xe on ∂Ω3 (50)

is applied for q ∈ {700, . . . , 1000}. This models a sudden ex-
posure of the surface to a fluid, fixed at an external temper-
ature xe = 300 [K], through a uniform and constant convec-
tion heat transfer coefficient ν = 10 [W/m2K]. The remaining
edges ∂Ω2 where (49) holds, are assumed thermally insulated
for the duration of the whole experiment, lasting 105 [s] (1000
samples).

Performance of the proposed distributed filter has been eval-
uated for different values of L over 500 independent Monte
Carlo runs and compared to the behavior of the centralized FE
Kalman filter. Simulation results, in Fig. 7, show that the pro-
posed FE estimators provide comparable performance to the
centralized filter, moreover the gap reduces as L increases. It
is worth pointing out that the peaks appearing in the RMSE
plot, displayed in Fig. 7, are due to the abrupt changes of the
unknown boundary conditions, which cause considerable jumps
of the estimation errors at time steps 300 and 700. Nevertheless,
the filters under consideration manage to compensate for the
lack of knowledge and effectively reduce the error, even if, due
to persistent and cumulative disturbances on the inferred field
profile, errors do not converge to zero. The original ground truth
and the reconstructed fields are depicted in Fig. 8 for q = 350
and q = 900.
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Fig. 8. Scenario 2: True (left) and estimated (cFE-KF, center – dFE-KF,
right) temperature fields in Kelvin (K) at time steps q = 350 (top) and
q = 900 (bottom).

Fig. 9. Scenario 1: Comparison of the mean value of the RMSE for
different values of γ .

VII. CONCLUSION

The paper has dealt with the decentralized estimation of a
time-evolving and space-dependent field governed by a linear
partial differential equation, given point-in space measurements
of multiple sensors deployed over the area of interest. The orig-
inally infinite-dimensional filtering problem has been approx-
imated into a finite-dimensional large-scale one via the finite
element method and, further, a distributed approach inspired
by the parallel Schwarz method for domain decomposition has
allowed to nicely scale the overall problem complexity with re-
spect to the number of used processing nodes. Combining these
two ingredients, a novel computationally efficient distributed
finite-element Kalman filter has been proposed to solve in a
decentralized and scalable fashion filtering problems involving
distributed-parameter systems. Both numerical stability of the
considered approximation scheme and exponential stability of
the proposed distributed finite-element Kalman filter have been
analysed. Simulation experiments have been presented in order
to demonstrate the validity of the proposed approach.

The results of this work can be extended to the estimation of
fields governed by more general partial differential equations
and also be applied to the estimation/localization of diffusive
sources.
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