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Abstract— This work investigates the effects of signal attacks
possibly combined with network deception attacks injecting
fake measurements on stochastic cyber-physical systems. The
goal of the attacker is to maximize the estimation error based
on the information available about the system and the measure-
ment models, preferably without being detected. This problem
is formulated following a worst-case approach characterizing
the maximum degradation the attacker can induce at each time
instant when a Bayesian filter developed within the random
finite set (RFS) framework is employed for simultaneous attack
detection and resilient state estimation. A novel concept of error
which captures the switching (Bernoulli) nature of the signal
attack is proposed as an appropriate distance measure for joint
detection–estimation. Furthermore, the notion of stealthiness is
introduced in order to derive attack policies useful to synthesize
undetectable perturbations that can deceive a Maximum A-
posteriori Probability (MAP) detector implemented for security.

Index Terms— Cyber-physical systems; integrity attacks;
Bayesian state estimation; stealthy attacks.

I. INTRODUCTION

The security of cyber-physical systems (CPSs) is nowa-

days a topic of paramount importance. In fact, many modern

systems for, e.g., electric power generation and distribution,

transportation and mobility, building and environmental mon-

itoring/control, health care, and industrial process control,

are characterized by a tight interaction of physical and com-

puting processes, interconnected through a communication

network, and can therefore be easily compromised by cyber-

attackers. For this reason, the design of secure CPSs is

attracting great attention [1]–[7]. In particular, the focus of

this paper is on secure state estimation, whose aim is to

reconstruct the state of the CPS of interest even when it

is subject to cyber-physical attacks. Recent work [8] has

formulated and solved the problem of detecting a switching

signal attack and securely estimating the state of the CPS

also in presence of fake measurement injection, by following

a Bayesian random set approach. The random set paradigm

has been used to model the switching nature of the signal

attack and the injection of counterfeit measurements via
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Bernoulli and, respectively, Poisson random sets. Further,

the stochastic Bayesian framework allows to account for

several sources of randomness in the estimation (e.g. process

and measurement noises, attack signal, counterfeit measure-

ments) in a probabilistic way unlike deterministic attack

monitors based on residual analysis. On the other hand,

the derivation of a Bayesian filter for joint attack detection

and resilient state estimation requires statistical assumptions

on the time-correlations and probability distributions of the

involved stochastic signals which, especially for the attack

signal and fake measurements chosen by cyber-attackers, are

very unlikely to hold in practice. In this respect, this paper

performs a worst-case analysis of the Bayesian joint attack

detector & state estimator presented in [8] and extended

in [9] and [10] to distributed settings and, respectively,

multiple attack modes. Our intention is to show the inherent

robustness of the proposed Bayesian random set filter with

respect to mismatches between the simplifying hypothesized

modelling assumptions (i.e. whiteness and Gaussianity) on

the attack signal and a worst-case attack signal suitably

on-line synthesized by the cyber-attacker so as to remain

stealthy while maximizing the estimation error. To be more

specific, in the considered worst-case analysis, it is assumed

that the attacker has perfect knowledge of the states of both

the system and the estimator, and also knows the algorithms

being used by the CPS monitor for attack detection and state

estimation. This is certainly an optimistic situation from the

point of view of the attacker (and pessimistic from the CPS

monitor viewpoint) and, hence, represents a valid testbed

for the effectiveness of the proposed Bayesian approach to

secure state estimation. Stealthiness conditions for a Maxi-

mum A posteriori Probability (MAP) attack detector will be

analyzed and a suitable performance loss to be maximized

by the attacker (and minimized by the CPS monitor) will be

defined. The main result of the worst-case analysis will be

to show that the cyber-attacker, in order to remain stealthy,

cannot degrade the CPS monitor performance loss beyond a

certain extent. It is worth to point out that previous studies,

e.g. [11], [12], have analyzed how the control/estimation

performance can be degraded by integrity attacks on CPSs

and have characterized the notion of attack stealthiness.

Differently from previous work, the present paper aims to

provide an analysis of the robustness of CPSs by following

a probabilistic approach.

The rest of the paper is organized as follows. Section II

deals with the problem setup (system and attack models,

background on random sets). Section III reviews the random

set Bayesian approach to joint attack detection and state esti-
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mation of [8]. Section IV provides a worst-case performance

analysis of the Bayesian joint attack detector-state estimator.

Then, Section V investigates a numerical case-study. Finally,

Section VI ends the paper with concluding remarks.

II. PROBLEM SETUP

A. System and attack model

The discrete-time system of interest is

xk+1 =

{
f0
k (xk) + wk, under no attack

f1
k (xk, ak) + wk, under attack

(1)

where: k is the time index; xk ∈ R
n is the state vector to

be estimated; ak ∈ R
p, called attack vector, is an unknown

input affecting the system under attack; f0
k (·) and f1

k (·, ·)
are known state transition functions that describe the system

evolution in the no attack and, respectively, attack cases; wk

is a random process disturbance also affecting the system.

For monitoring purposes, the state of the above system is

observed through the measurement

yk =

{
h0
k(xk) + vk, under no attack

h1
k(xk, ak) + vk, under attack

(2)

where: h0
k(·) and h1

k(·, ·) are known measurement functions

that refer to the no attack and, respectively, attack cases;

vk is a random measurement noise. It is assumed that the

measurement yk is actually delivered to the system monitor

with probability pd ∈ (0, 1], where the non-unit probability

is due to several possible reasons like, e.g., temporary denial

of service, packet loss, sensor inability to detect or sense

the system. The attack modeled in (1)-(2) via the attack

vector ak is usually referred to as signal attack. Besides the

signal attack, the proposed threat model takes into account

the possible presence of malicious extra packet injections, al-

ready considered in [8] and [13]. This means that, in addition

to the system-originated measurement yk in (2), the system

monitor might receive from some cyber-attacker extra fake

measurements indistinguishable from the system-originated

one. For the subsequent developments, it is convenient to

introduce the attack set at time k, Ak, which is either equal

to the empty set if the system is not under signal attack at

time k or to the singleton {ak} otherwise, i.e.

Ak =

{ ∅, if the system is not under signal attack

{ak}, otherwise.

Due to the possible presence of the extra packet injection
attack, it is also convenient to define the measurement set at

time k
Zk = Yk ∪ Fk (3)

where

Yk =

{ ∅ with probability 1− pd
{yk} with probability pd

(4)

is the set of system-originated measurements and Fk the

finite set of fake measurements.

The problem of joint attack detection and state estimation

amounts to jointly estimating, at each time k, the state xk

and signal attack set Ak given the set of measurements Zk �
=

∪k
i=1Zi up to time k.

B. Random set estimation

An RFS (Random Finite Set) Z over Z is a random vari-

able taking values in F(Z), the collection of all finite subsets

of Z. The mathematical background needed for Bayesian

random set estimation can be found in [14]; here, only

the basic concepts needed for the specific problem at hand

will be recalled. The statistics of an RFS Z is completely

characterized by the set density f(Z), also called FISST (FI-
nite Set STatistics) probability density. In fact, given f(Z),
the cardinality probability mass function p(m) that Z have

m ≥ 0 elements and the joint PDFs f (z1, z2, . . . , zm|m)
over Z

m given that Z have m elements, are obtained as

follows:

p(m) =
1

m!

∫
Zm

f({z1, . . . , zm})dz1 · · · dzm

f (z1, . . . , zm|m) =
1

m! p(m)
f({z1, . . . , zm}).

In order to measure probability over subsets of Z or compute

expectations of random set variables, Mahler [14] introduced

the notion of set integral for a generic real-valued function

g(Z) of an RFS Z as∫
g(Z) δZ = g(∅)+

∞∑
m=1

1

m!

∫
g({z1, . . . , zm}) dz1 · · · dzm

(5)

Two specific types of RFSs, i.e. Bernoulli and Poisson RFSs,

will be considered in this work in order to model the attack

set Ak and the set of fake measurements Fk at a given time

k. In particular, the attack set is modeled as a Bernouli RFS

which can be either empty or, with some probability r ∈
[0, 1], a singleton {a} distributed over A according to the

PDF �(·). Accordingly, its set density is defined as follows:

f(A) =
{
1− r, if A = ∅
r · �(a), if A = {a} . (6)

III. BAYESIAN JOINT ATTACK DETECTOR AND STATE

ESTIMATOR

As stated above, the signal attack input is modeled as a

Bernoulli random set A ∈ B(A), where B(A) = ∅ ∪ S(A) is

a set of all finite subsets of the attack space A ⊆ R
q , and S

denotes the set of all singletons (i.e., sets with cardinality

1) {a} such that a ∈ A. Further, the state vector to be

estimated takes values in the state space X ⊆ R
n. Hence,

for the purpose of joint attack detection and state estimation,

it is convenient to introduce the Hybrid Bernoulli Random
Set (HBRS) X �

= (A, x), as a new state variable which

incorporates the Bernoulli attack random set A and the

random state vector x, taking values in the hybrid space

B(A)×X. A HBRS is fully specified by the (signal attack)

probability r of A being a singleton, the PDF p0(x) defined

on the state space X, and the joint PDF p1(a, x) defined on
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the joint attack input-state space A× X, i.e.

p(A, x) =
{

(1− r) p0(x), if A = ∅
r · p1(a, x), if A = {a}

. (7)

In [8], we proposed a Bayesian filter to recursively solve

the problem of joint attack detection and resilient state esti-

mation of stochastic CPSs by processing, at each time instant,

the current observation set Z along with all the available

information (about the attack and the state) provided by the

a-priori hybrid Bernoulli density p(A, x).

MAP attack detector

For the forthcoming analysis on stealthiness, the criterion

adopted for attack detection has to be specified. In this

respect, Maximum A posteriori Probability (MAP) attack

detection will be considered. In particular, the decision about

whether Â �= ∅ or Â = ∅ (the system is under signal

attack or not) is based on the maximum of the a posteriori
probabilities Prob(A �= ∅|Z) and Prob(A = ∅|Z) for the

two hypotheses. Since this is a binary hypothesis problem,

whose outcome is only depending on a specific observation

set Z in F(Z), the decision rule can be used to divide the

overall observation space F(Z) into two decision regions,

F0 and F1. Whenever the measurement set falls in F0, the

MAP detector will choose Â = ∅, whereas if Z falls in

F1, the MAP detector will establish that Â �= ∅. The MAP

decision rule for a Bayesian attack detector based on the

measurement model (3) is detailed below. Let �0(y|x) and

�1(y|a, x) denote the likelihood functions associated to the

measurement model (2) in the no attack and, respectively,

attack cases.

Lemma 1: When Z �= ∅, the MAP detector for measure-

ment model (3) assigns Â = ∅ if and only if Z ∈ F0, where

F0 = F(Z) \ F1, F1 = {Z ∈ F(Z) : α0(Z)
α1(Z) ≤ r

1−r} and

α0(Z) �
= 1− pd + pd

∑
y∈Z

�0(y|x)/ν(y) (8)

α1(Z) �
= 1− pd + pd

∑
y∈Z

�1(y|a, x)/ν(y). (9)

Moreover, when Z = ∅, the MAP detector assigns Â = ∅ if

and only if r < 1/2.

Proof: Let us consider the conditional probabilities

p0(Z) �
= Prob(A = ∅|Z) (10)

p1(Z) �
= Prob(A �= ∅|Z). (11)

By exploiting the Bayes rule, we can rewrite

p0(Z) = Prob(A = ∅) Prob(Z|A = ∅)/c (12)

p1(Z) = Prob(A �= ∅) Prob(Z|A �= ∅)/c (13)

where c is a normalizing factor. For the measurement model

(3), the above probabilities take the form (see [8])

p0(Z) = (1− r) e−ξ
∏
y∈Z

ν(y)

[
1− pd + pd

∑
y∈Z

�0(y|x)
ν(y)

]
/c

p1(Z) = r e−ξ
∏
y∈Z

ν(y)

[
1− pd + pd

∑
y∈Z

�1(y|a, x)
ν(y)

]
/c

Given the measurement set Z , the MAP detector assigns

Â = ∅ if p0(Z) > p1(Z), i.e.

α0(Z)
α1(Z) >

r

1− r
(14)

where (8)-(9) have been used. Thus, if the detector receives

a non-empty set Z , it assigns Â = ∅ only if Z ∈ F0, which

is the region in F(Z) associated to the absence of the attack

when Z is delivered. In the case Z = ∅, the MAP detector

receives no information through observation of the state, and

hence, as it can be easily derived from (14), it will assign

Â = ∅ if and only if r < 1/2, where r is the a priori

probability available on the existence of the attack before

the MAP test is carried out.

Note that, even though the above MAP test is Bayes-

optimal, it may not achieve the minimum mean square error.

In addition, as it will be shown in Section IV, the MAP

assumption is useful to characterize the worst-case signal

attack that achieves maximum error on state and attack

estimation, while it is clearly unnecessary when Z = ∅. It is

also worth pointing out that in the case of no extra packet

injection and pd = 1, i.e. when Z = {y} in (3), the MAP

criterion (14) leads to the standard likelihood ratio test [15]

�0(y|x)
�1(y|a, x) ≶ r

1− r
. (15)

IV. WORST-CASE PERFORMANCE ANALYSIS

In this section the aim is to find the maximal performance

degradation that an attacker can induce on the system through

a worst-case static analysis, in which the dynamic model is

not taken into account. At each time instant, based on the

information available described in Section III, the goal of

the attacker is to maximize the negative effects the injected

signal attack a can cause, given the state x of the system

and the measurement model

Z = Y ∪ F (16)

with system-originated measurement y given by

y =

{
h0(x) + v, under no attack

h1(x, a) + v, under attack
. (17)

As further described below, the worst-case analysis can be

either addressed as a maximization problem of a suitably

defined performance error where the attacker has no con-

straints on the choice of the attack input, or as a constrained

problem in which, in order to avoid detection, the signal

attack must fulfill a certain condition to remain stealthy.
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Although we restrict our attention to the static estimation

problem, the proposed analysis gives meaningful insights that

can be helpful also in the dynamic case, when the attacker

maximizes at each time instant the effects of the signal attack

injected on the system through a greedy strategy.

A. Performance loss

We are interested in finding the worst-case performance

degradation in terms of the average error between the true

random set X and its estimate X̂ �
= (Â, x̂). In particular,

the error is averaged over the measurement set Z since the

attacker is assumed to have no knowledge on Z when the

signal attack is synthesized. Similarly to [16] for random

sets, the standard concept of Euclidean error between random

vectors can be extended in order to define a generalized

metric e(X , X̂ ) between two hybrid Bernoulli random sets,

which accounts for the possibility of the attack set being

empty. In particular, the error on state estimation ex(X , X̂ )
is defined as:

ex [(A, x), (∅, x̂)] = ||x− x̂0|| (18)

ex [(A, x), (â, x̂)] = ||x− x̂1|| (19)

while the definition of the error ea(A, Â) on the joint

detection-estimation of the attack random set is

ea(∅, ∅) = 0 (20)

ea(a, â) = ||a− â|| (21)

ea(∅, â) �
= e0a (22)

ea(a, ∅) �
= e1a (23)

It can be noticed that (22)-(23) define the error for the two

possible cardinality mismatches between the true and the

estimated attack sets. Different metrics can be used for these

errors, such as the OSPA (Optimal SubPattern Assignment)

distance [16] which assigns e0a = e1a with e1a ≥ ||a −
â||, ∀a, â ∈ A. According to the aforementioned metric, the

following mean square error averaged on the measurement

set can be defined

σ2(A, x) =
∫

p(Z|A, x)e2(X , X̂ (Z)) δZ (24)

where X̂ is clearly a function of Z , denoted as X̂ (Z),
and p(Z|A, x) is the likelihood function. The overall error

in (24), which accounts for both joint attack detection-

estimation and state estimation discrepancies, can be written

as

σ2(A, x) = β σ2
x(A, x) + (1− β)σ2

a(A, x), β ∈ [0, 1] (25)

so as to differently penalize, through the choice of coefficient

β, the two sources of error. In particular, the mean square

error on state estimation takes the form

σ2
x(A, x) =

{
σ2
x(∅, x), if A = ∅

σ2
x(a, x), if A = {a}

. (26)

Next, we derive the performance loss for two measurement

models corresponding to the presence of only a signal attack

on the system and of the combined action of signal attack

and extra packet injection.

No extra packet injection (Z = Y): First of all, let us

consider the mean square error associated to the presence of

the signal attack

σ2
x(a, x) =

∫
p(Z|{a}, x) e2x(a, x,Z) δZ (27)

in the case of measurement set Z = Y (no extra packet injec-

tion attack), where e2x(a, x,Z) �
= e2x

[
(A = {a}, x), X̂ (Z)

]
is the error on state estimation when A is non-empty.

Since X̂ is a function of the measurement set Z , using the

definition of integral (5) in (27) leads to

σ2
x(a, x) = p(Z = ∅|{a}, x) e2x(a, x,Z = ∅) (28)

+

∫
p(Z = {y}|{a}, x) e2x(a, x,Z = {y}) dy

where the likelihood function for Z = Y is given by

p(Z|{a}, x) =
{

1− pd, if Z = ∅
pd �

1(y|a, x), if Z = {y}
(29)

�1(y|a, x) being the conventional likelihood of y due to the

system under attack a, in state x. Hence, by substituting (29)

into (28) we obtain

σ2
x(a, x) = (1− pd) e

2
x(a, x,Z = ∅) (30)

+pd

∫
�1(y|a, x) e2x(a, x,Z = {y}) dy.

According to Lemma 1, the integral over Z in (30) can be

broken down into two integrations over the distinct regions

Z0 and Z1. These are the decision regions defined in Lemma

1, restricted to the case |Z| = 1, i.e. Z0 = F0 ∩ Z and

Z1 = F1∩Z. This also allows us to explicitly write the error

in (30) on state estimation when Z �= ∅ as

e2x(a, x,Z = {y}) =
{ ||x− x̂0(y)||2, if y ∈ Z0

||x− x̂1(y)||2, if y ∈ Z1

(31)

while for Z = ∅ we have

e2x(a, x,Z = ∅) =
{ ||x− x̂0(y)||2, if r < 1/2

||x− x̂1(y)||2, otherwise
. (32)

After breaking the integral, (30) can be rewritten as

σ2
x(a, x) = (1− pd) e

2
x(a, x,Z = ∅) (33)

+pd

∫
Z0

�1(y|a, x) ||x− x̂0(y)||2 dy

+pd

∫
Z1

�1(y|a, x) ||x− x̂1(y)||2 dy.

Furthermore, following the same rationale used for the error

on state estimation, the mean square error on joint attack

detection-estimation in (25) can be written for A = {a} as

σ2
a(a, x) = (1− pd) e

2
a(a, x,Z = ∅) (34)

+pd

∫
�1(y|a, x) e2a(a, x,Z = {y}) dy.
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From Lemma 1, the error for Z = {y} takes the form

e2a(a, x,Z = {y}) =
{

e21a, if y ∈ Z0

||a− â(y)||2, if y ∈ Z1

(35)

so that (34) becomes

σ2
a(a, x) = (1− pd) e

2
a(a, x,Z = ∅) (36)

+pd e
2
1a

∫
Z0

�1(y|a, x) dy

+pd

∫
Z1

�1(y|a, x) ||a− â(y)||2 dy

where for Z = ∅ we defined

e2a(a, x,Z = ∅) =
{

e21a, if r < 1/2

||a− â(y)||2, otherwise
. (37)

Extra packet injection (Z = Y ∪F): In the presence of

possible extra fake measurements injection in the communi-

cation channel, we consider the observation set (3). In this

case, Y is a Bernoulli random set which depends on whether

the system-originated measurement y is delivered or not,

while F models fake measurements as a Poisson random set

such that the number of extra packets is Poisson-distributed

(see [8] for further details on such random set modeling of

fake measurements). For this measurement model, p(Z|A, x)
for a non-empty attack set A takes the form

p(Z|a, x) = γ(F)
[
1− pd + pd

∑
y∈Z

�1(y|a, x)
ν(y)

]
(38)

where γ(F) = e−ξ
∏

y∈Z ν(y) is the FISST PDF of fake-
only measurements with average number ξ and intensity
ν(·) = ξ κ(·), κ(·) being the PDF of the elements in F .
By applying the definition of set integral (5) to (27) and
substituting (38), we can write

σ2
x(a, x) = (1− pd)e

−ξ e2x(a, x,Z = ∅) (39)

+pd

∞∑
m=1

e−ξ

m!

∫
Zm

m∑
i=1

�1(yi|a, x)
∏
j �=i

ν(yj) e
2
x(a, x,Z �= ∅)dy1:m

+(1− pd)

∞∑
m=1

e−ξ

m!

∫
Zm

m∏
i=1

ν(yi) e
2
x(a, x,Z �= ∅)dy1:m

where we used p(∅|a, x) = (1 − pd)e
−ξ for the case

Z = ∅. Note that the second term on the RHS of (39)

represents the event of receiving a set of |Z| = m pack-

ets y1:m = {y1, . . . , ym}, m = 1, 2, . . . which include

the system-originated measurement together with a set of

fake observations. In this case, p(Z|a, x) with Y = {y}
is the union of disjoint events that each point of Z is

system-originated and the rest are fake measurements, i.e.

pd
∑

y∈Z �1(y|a, x)e−ξ
∏

z∈Z\y ν(z). Finally, the third term

on the RHS models the arrival of only fake packets, i.e. the

event Z = F . Next, let us define

�1m(Z|a, x) �
= (40)

1

mξm−1

∞∑
m=1

e−ξ

m!

∫
Zm

m∑
i=1

�1(yi|a, x)
∏
j �=i

ν(yj)dy1:m

the probability density of Z conditioned on |Z| = m
and on the fact that one of the points of Z is system-

originated. Notice that the normalizing factor in (40) is

mξm−1 =
∫∑m

i=1 �
1(yi|a, x)

∏
j �=i ν(yi)dy1:m. Then, (39)

can be rewritten as

σ2
x(a, x) = (1− pd)e

−ξ e2x(a, x,Z = ∅) (41)

+pd

∞∑
m=1

mξm−1e−ξ

m!

∫
Zm

�1m(Z|a, x) e2x(a, x,Z �= ∅)dy1:m

+(1− pd)

∞∑
m=1

e−ξ

m!

∫
Zm

m∏
i=1

ν(yi) e
2
x(a, x,Z �= ∅)dy1:m.

On the basis of Lemma 1, when a m–point measurement

set is received, the MAP detector will assign Â = ∅ iff

Z ∈ Z
m
0 and Â �= ∅ iff Z ∈ Z

m
1 , where Z

m
0 ,Zm

1 are the

decision regions defined in Lemma 1, restricted to the case

|Z| = m, i.e. Zm
0 = F0∩Zm and Z

m
1 = F1∩Zm. Hence, the

expressions of the errors in (41) can be computed as follows

e2x(a, x,Z �= ∅) =
{ ||x− x̂0(Z)||2, if Z ∈ Z

m
0

||x− x̂1(Z)||2, if Z ∈ Z
m
1

(42)

while for Z = ∅ we have

e2x(a, x,Z = ∅) =
{ ||x− x̂0(Z)||2, if r < 1/2

||x− x̂1(Z)||2, otherwise
. (43)

Moreover, by dividing the integral in (41) into two integrals

over Zm
0 and Z

m
1 , we obtain

σ2
x(a, x) = (1− pd)e

−ξ e2x(a, x,Z = ∅) (44)

+pd

∞∑
m=1

mξm−1e−ξ

m!

∫
Z
m
0

�1m(Z|a, x)||x− x̂0(Z)||2dy1:m

+pd

∞∑
m=1

mξm−1e−ξ

m!

∫
Z
m
1

�1m(Z|a, x)||x− x̂1(Z)||2dy1:m

+(1− pd)

∞∑
m=1

e−ξ

m!

∫
Z
m
0

m∏
i=1

ν(yi)||x− x̂0(Z)||2dy1:m

+(1− pd)

∞∑
m=1

e−ξ

m!

∫
Z
m
1

m∏
i=1

ν(yi)||x− x̂1(Z)||2dy1:m.

In an analogous way, the mean square error on joint attack

detection-estimation in the case of extra packet injection

attack can be written for A = {a} as

σ2
a(a, x) = (1− pd) e

−ξ e2a(a, x,Z = ∅) (45)

+pd e
2
1a

∞∑
m=1

mξm−1e−ξ

m!

∫
Z
m
0

�1m(Z|a, x)dy1:m

+pd

∞∑
m=1

mξm−1e−ξ

m!

∫
Z
m
1

�1m(Z|a, x) ||a− â(Z)||2 dy1:m

+(1− pd) e
2
1a

∞∑
m=1

e−ξ

m!

∫
Z
m
0

m∏
i=1

ν(yi)dy1:m

+(1− pd)

∞∑
m=1

e−ξ

m!

∫
Z
m
1

m∏
i=1

ν(yi) ||a− â(Z)||2 dy1:m
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where we used, according to Lemma 1, the following error

on the attack detection-estimation for Z �= ∅:

e2a(a, x,Z �= ∅) =
{

e21a, if Z ∈ Z
m
0

||a− â(Z)||2, if Z ∈ Z
m
1

(46)

while the error for Z = ∅ in (45) takes the values

e2a(a, x,Z = ∅) =
{

e21a, if r < 1/2

||a− â(Z)||2, otherwise
. (47)

B. Worst-case performance loss and stealthiness constraint

Suppose now the attacker knows the state x of the sys-

tem and the measurement model (16), then the worst-case

performance loss on Bayesian estimation for A �= ∅ can be

found by solving the optimization problem

max
a

σ2(a, x) (48)

Clearly, unless the signal attack has a specific structure or

satisfies some constraints, the worst-case performance can

even be infinitely large. The situation is however different

when the action of an attacker injecting a signal attack

on the system to achieve the maximal performance loss in

terms of Bayesian estimation is constrained by the condition

on the attack being stealthy. In such a case, the goal of

the attacker will be to find the worst-case error that can

be provoked, without being detected by a decision maker

based on the MAP criterion as the one presented in Section

III. If on one hand the requirement of being stealthy keeps

the monitoring system unaware of the attack presence, on

the other it will inevitably narrow down the achievable

performance deterioration. Assuming that the attacker knows

the MAP decision rule (14), and due to the uncertainty about

the measurement set Z , the aim will be to synthesize a

signal attack which guarantees a certain probabilistic level

of stealthiness. This idea can be formalized through the

following definition.

Definition 1: ε–stealthiness: Given ε ∈ (0, 1), a signal

attack A �= ∅ is ε–stealthy if

P (a, x) > 1− ε (49)

where P (a, x) = Prob(Â = ∅|A = {a}, x).
In the presence of extra fake packets, P (a, x) in (49) is given

by

P (a, x) = pd

∞∑
m=1

mξm−1e−ξ

m!

∫
Z
m
0

�1m(Z|a, x) dy1:m

+(1− pd)

∞∑
m=1

e−ξ

m!

∫
Z
m
0

m∏
i=1

ν(yi) dy1:m (50)

which reduces to P (a, x) = pd
∫
Z0

�1(y|a, x) dy for Z = Y .

Under the stealthiness constraint (49), the worst-case per-

formance loss on state estimation for A �= ∅ can be obtained

as the solution of the problem

max
a

σ2
x(a, x)

subject to P (a, x) > 1− ε
(51)

It is worth pointing out that, in solving the constrained

problem (51), the attacker must reach a compromise between

the dual objectives of worsening the estimation performance

and guaranteeing stealthiness of the signal attack with some

level of confidence. Note that, in (51) we considered only

the error on state estimation, since the intention of deceiving

the attack detection is already taken into account by means

of constraint (49).

V. ILLUSTRATIVE CASE-STUDY

In this section we validate the developed analysis for the

special class of linear Gaussian SISO models, for which

it is possible to derive a closed-form solution to problem

(51). In general, no analytical solution is admitted and one

can resort to Monte Carlo integration methods [17] which

rely on random sampling to numerically compute integrals.

Specifically, we consider an observation model with no extra

packet injection and pd = 1, i.e.

Z = {y} (52)

where y is generated as

y =

{
c x+ v, under no attack

c x+ h a+ v, under attack
(53)

For such a system, the MAP decision rule (14) reduces to

the standard likelihood ratio test (15)

�0
(
y|x̂0(y)

)
�1
(
y|â(y), x̂1(y)

) ≶ r

1− r
(54)

where x̂0(y), x̂1(y) and â(y) are the available a posteriori

estimates of the state conditioned on the fact of being under

nominal operation, under attack and of the signal attack,

respectively. Given x, in the scalar case a turns out to be

ε–stealthy if P (a, x) =
∫
Z0

�1(y|a, x) dy satisfies condition

(49), where Z0 = [ymin, ymax] is a suitable interval in Z.

In order to solve the constrained problem (51), the attacker

seeks to maximize the performance error

σ2
x(a, x) =

∫
Z0

�1(y|a, x) (x− x̂0(y))2 dy (55)

+

∫
Z1

�1(y|a, x) (x− x̂1(y))2 dy.

subject to
∫
Z0

�1(y|a, x) dy > 1 − ε. For the simulations

we considered the prior distributions N (x̄0,Σ0
x),N (x̄1,Σ1

x)
and N (ā,Σa). In addition, we set r = 0.2, x̄0 = x̄1 = 1,

ā = 0.5, Σ0
x = Σ1

x = Σa = 2, c = 1, h = 2, x = 1.5
and sensor noise v ∼ N (0, σ2

v) with σ2
v = 0.05. Note that

x̂0(y), x̂1(y) in (55) are the state estimates provided by a

standard static Minimum Mean-Square Estimator (MMSE),

and â = (y − c x̂1)/h. In this practical case-study, all

the functions are evaluated by sampling the value a on

2001 evenly spaced points in the interval [−10, 10]. Fig.

1 (a) shows the likelihood ratio test (54), upon which the

decision of the MAP detector about the presence/absence

of the signal attack a is based. As it can be seen in

Fig. 1 (b), for a given x, the detector will assign Â =
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∅ whenever the measurement y(a, x) is generated with a
satisfying �0(y|x̂0)/�1(y|â, x̂1) > r/1 − r (red values of y
centered in ȳ0 = c x̄0). The attacker, with no knowledge

of y, will exploit the information about the state and the

MAP decision rule to synthesize an ε–stealthy attack a such

that P (a, x) =
∫
Z0

�1(y|a, x) dy > 1 − ε. The resulting ε–
stealthiness constraint is plotted in Fig. 2 (a) for ε = 0.1. We

can observe that, due to the abrupt transition between stealthy

and unstealthy regions, values of the signal attack too close

to the corresponding threshold might generate measurements

falling in Z1, and hence produce the decision Â �= ∅. On

the other hand, the sharp behavior of P (a, x) ensures that

for a large interval of values around the midpoint of the ε–
stealthy region, corresponding to the red circles in Fig. 2

(a), an undetected signal attack will be produced with very

high confidence. Finally, Fig. 2 (b) shows the performance

loss σ2
x,0(a, x) =

∫
Z0

�1(y|a, x) ||x − x̂0(y)||2 dy associated

to the attack being undetected, plotted in the region of ε–
stealthiness.

Fig. 1: (a) Likelihood ratio test as a function of a. (b) System-

generated measurement y as a function of a.

Fig. 2: (a) ε–stealthiness constraint as a function of a (ε =
0.1). (b) Performance loss σ2

x,0(a, x) in the ε–stealthiness

region.

VI. CONCLUSIONS

The paper has addressed important issues concerning

the monitoring of a cyber-physical system where, on one

hand, a system monitor aims to simultaneously detect the

presence of attacks and securely estimate the state of the CPS

relying on a Bayesian approach while, on the other hand, an

attacker attempts to compromise as much as possible such

tasks by injecting a suitably designed attack signal into the

CPS. In particular, a performance loss, averaged over the

observations, has been introduced in order to measure the

joint attack detection & state estimation performance of the

CPS monitor. Further, a probabilistic notion of stealthiness

with a certain degree of confidence has been defined and

stealthiness conditions for a MAP detector have been inves-

tigated. A worst-case scenario, where the attacker knows both

the true system state and the CPS monitor’s (state & attack

vector) estimates and tries to maximize the performance loss,

has been analyzed. The main result of this analysis has been

to show that if the attacker wants to remain stealthy with

some degree of confidence, then it cannot degrade too much

the CPS monitor’s performance. This clearly implies that,

despite its probabilistic nature, a Bayesian approach to CPS

monitoring has an intrinsic degree of robustness.
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