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Distributed Joint Attack Detection and Secure
State Estimation

Nicola Forti , Giorgio Battistelli , Luigi Chisci , Senior Member, IEEE, Suqi Li , Bailu Wang ,
and Bruno Sinopoli

Abstract—The joint task of detecting attacks and securely mon-
itoring the state of a cyber-physical system is addressed over a
cluster-based network wherein multiple fusion nodes collect data
from sensors and cooperate in a neighborwise fashion in order to
accomplish the task. The attack detection–state estimation prob-
lem is formulated in the context of random set theory by rep-
resenting joint information on the attack presence/absence, on the
system state, and on the attack signal in terms of a hybrid Bernoulli
random set (HBRS) density. Then, combining previous results on
HBRS recursive Bayesian filtering with novel results on Kullback–
Leibler averaging of HBRSs, a novel distributed HBRS filter is
developed and its effectiveness is tested on a case study concerning
wide-area monitoring of a power network.

Index Terms—Cyber-physical systems, distributed detection and
estimation, signal attack, Bayesian state estimation, Bernoulli filter.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPSs) arise from the inte-
gration of computational and physical resources, inter-

connected via a communication network. Typical examples of
CPSs include next-generation systems in electric power grids,
transportation and mobility, building and environmental moni-
toring/control, health-care, and industrial process control. While
on one hand, advances in CPS technology will enable growing
autonomy, efficiency, seamless interoperability and cooperation,
on the other hand the increased interaction between cyber and
physical realms is unavoidably introducing novel security vul-
nerabilities, which make CPSs subject to non-standard mali-
cious threats. Recent real-world attacks such as the Maroochy
Shire sewage spill, the Stuxnet worm sabotaging an industrial
control system, and the lately reported massive power outage
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against Ukrainian electric grid [1], have brought into particularly
sharp focus the urgency of designing secure CPSs. In presence
of malicious threats against CPSs, standard approaches exten-
sively used for systems subject to benign faults and failures
need to be rethought. This is why recent advances on the design
of secure systems have explored different paths, e.g., [2]–[10].
Recent work on attack detection and secure state estimation for
CPSs [11], [12] has posed the problem in a Bayesian frame-
work [13] and has exploited the powerful tools of random set
theory [14], [15] for modelling various types of cyber-attacks,
specifically: (i) signal attack, i.e. signal of arbitrary magnitude
and location injected (with known structure) to corrupt sen-
sor/actuator data, (ii) packet substitution attack, i.e., an intruder
possibly intercepts and then replaces the system-generated mea-
surement with a fake (unstructured) one, and (iii) extra packet
injection [16], [17] in which multiple counterfeit observations
(junk packets) are possibly added to the system-generated mea-
surement. In particular, the signal attack presence/absence is
modelled by means of a Bernoulli random set (i.e., a set that
can be either empty or a singleton depending on the presence
or not of the attack) while the possible injection of fake mea-
surements is modelled by a Bernoulli or Poisson random set
for the packet substitution or, respectively, extra packet injec-
tion attack. Accordingly, joint attack detection-state estimation
has been formulated as a recursive Bayesian filtering problem
wherein the joint posterior density of the signal attack Bernoulli
set and of the state vector, called Hybrid Bernoulli Random
Set (HBRS) density in [11], is updated in time and whenever
new data become available. The resulting centralized HBRS fil-
ter developed in [11] can timely detect signal attacks as well
as reliably estimate the system state even in presence of the
aforementioned (signal, packet substitution and extra packet in-
jection) cyber-attacks provided that a fusion center receives all
sensor data and stores/processes the aggregated data. Due to the
geographically dispersed nature of CPSs, a distributed approach,
wherein multiple fusion nodes communicate and cooperate to
perform the joint attack detection and state estimation task, is
by far preferable. However, devising distributed solutions be-
comes particularly challenging when the correlations between
estimates from different fusion nodes are not known. The opti-
mal solution to this problem was developed in [18], but the com-
putational cost of calculating the common information can make
the solution intractable in many real-world applications. A num-
ber of suboptimal solutions with demonstrated tractability have
been formulated based on the Kullback-Leibler average (KLA)
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or generalized Covariance Intersection rule proposed by Mahler
[19]. KLA is the generalization of Covariance Intersection
[20] which only utilizes the mean and covariance and is lim-
ited to Gaussian posteriors. The KLA fusion rule relaxes the
Gaussian constraint, and can be used to fuse multi-object
distributions with completely unknown correlations, since it
intrinsically avoids any double counting of common infor-
mation [21].

In this respect, a novel distributed HBRS filter is developed
in the present paper to cope with a sensor network with cluster-
based configuration. More precisely, the considered network
consists of multiple fusion nodes (cluster heads or system mon-
itors) each receiving measurements from multiple remote sen-
sors via non-secure links and exchanging information with a
subset of neighbors via secure links. The main contributions of
this paper can be summarized as follows.

i) The attack detection-state estimation problem is formu-
lated in the context of random set theory by representing
the joint information on the attack presence/absence, on
the system state and on the signal attack in terms of a
HBRS density.

ii) We derive a closed-from solution for the KLA of HBRS
densities. This novel result is provided as a key ingredient
to derive the proposed distributed HBRS filter for joint
attack detection and secure state estimation.

iii) We prove the immunity of the KLA fusion of HBRSs to
double counting of information.

iv) We exploit consensus on the average [22], [23] to perform
the collective KLA computation of HBRS densities over
the whole network.

v) We test the proposed distributed HBRS filter for joint
attack detection & secure state estimation on a benchmark
wide-area monitoring system and we verify the efficiency
of the Gaussian-mixture implementation of the proposed
KLA fusion algorithm.

The rest of the paper is organized as follows. Section II pro-
vides motivations and the problem setup. Section III reviews
HBRSs used to represent information about the CPS. Then
Section IV deals with distributed fusion of HBRSs. Section V
presents the novel distributed HBRS filter for joint attack de-
tection and secure state estimation. Section VI provides a sim-
ulation case-study concerning wide-area monitoring of a smart
grid to demonstrate the potentials of the proposed approach. Fi-
nally, Section VII ends the paper with concluding remarks and
perspectives for future work.

II. PROBLEM SETUP

A. Motivating Example: Wide-Area Monitoring Systems

To motivate the problem of distributed secure state estimation
of CPSs we consider a wide-area monitoring system (WAMS)
[24], [25], i.e. a power system with multiple control areas
consisting of local generators and loads, connected by inter-
area tie-lines (see Fig. 1 for the example of the IEEE 14-bus
wide-area monitoring system). WAMSs have recently attracted
considerable attention due to the deregulation of modern power
networks which have led to the introduction of numerous

Fig. 1. IEEE 14-bus wide-area monitoring system (partitioned into four dif-
ferent areas).

Fig. 2. Cluster-based configuration of a sensor network with local fusion
nodes and sensors, secure and non-secure links.

regional transmission organizations (RTOs) conceived to
operate smaller portions of a large interconnected power
network. This motivates the interest on decentralized strategies
to monitor the electric grid over large geographical areas, each
requiring the overall interconnection’s state information to be
available via a regional communication structure.

As illustrated in Fig. 1, WAMSs are partitioned power sys-
tems (on a geographical basis) where each non-overlapping area
is assigned to a local fusion node, which only has access to its
own local measurements and is dedicated to the reconstruction
of the overall state by exchanging data with a small number
of neighboring areas through wireless communication chan-
nels. The considered communication scheme is shown in Fig. 2.
Due to both power and bandwidth constraints imposed by such
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communication systems, a centralized setup collecting multi-
area measurements may not be practically feasible in wide-area
monitoring operations. All these reasons call for a distributed
approach in order to minimize the communication overhead
and better manage coordination across geographically separated
areas.

B. System Description and Attack Model

Let the discrete-time cyber-physical system of interest be
modeled by

xt+1 =

{
f 0
t (xt) + wt, under no attack

f 1
t (xt, at) + wt, under attack

(1)

where: t is the time index; xt ∈ Rn is the state vector to be
estimated; at ∈ Rm , called attack vector, is an unknown in-
put affecting the system only when it is under attack; f 0

t (·)
and f 1

t (·, ·) are known state transition functions that describe
the system evolution in the no attack and, respectively, attack
cases; wt is a random process disturbance also affecting the
system, independent identically distributed (IID) according to
the probability density function (PDF) pw (·).

The attack modeled in (1) and (2) via the attack vector at is
usually referred to as signal attack. While for ease of presenta-
tion only the case of a single attack model is taken into account,
multiple attack models [10], [12] could be accommodated in
the considered framework by letting (1) and (2) depend on a
discrete variable, say νt , which specifies the particular attack
model and has to be estimated together with at .

For monitoring purposes, a sensor network with cluster-based
configuration is taken into account. More specifically, it is sup-
posed that the state of the above system is observed through a set
ofNs remote sensors, each one characterized by a measurement
equation of the form

yit =

{
h0,i
t (xt) + vit , under no attack

h1,i
t (xt, at) + vit , under attack

(2)

for i = 1, . . . , Ns , where h0,i
t (·) and h1,i

t (·, ·) are the known
measurement functions of sensor i that refer to the no attack
and, respectively, attack cases; the random measurement noises
vit , mutually independent as well as independent of the process
disturbance wt , are also IID with PDFs piv (·).

Besides the Ns remote sensors, the network consists of a set
N = {1, . . . , Nf } of Nf fusion nodes (cluster heads or system
monitors). Each fusion node j ∈ N receives the measurements
yit of a subset Sj of the sensor set S = {1 . . . , Ns} and ex-
changes information with a subset Nj ⊆ N of fusion nodes.
The set Nj is called the set of in-neighbors of fusion node j.
Hence, the set of fusion nodes define a (possibly directed) net-
work (or graph) with node set N and link set L ⊆ N ×N given
by L = {(�, j) : � ∈ Nj}. For the reader’s convenience, an ex-
ample of a sensor network with cluster-based configuration is
depicted in Fig. 2. Clearly, it is supposed that

⋃
j∈N Sj = S, i.e.

each sensor sends its local measurements to at least one fusion
node. On the other hand, in order to allow for redundancy in

the communication topology, the sets Sj , j ∈ N , need not be
mutually disjoint.

In accordance with the considered hierarchical topology, the
network nodes are supposed to be characterized by different lev-
els of security. More specifically, the fusion nodes are considered
as trusted nodes, i.e. they cannot be compromised by adversarial
attacks, and the communication between them is supposed to be
secure, for instance because it is carried out through dedicated
wired communication channels. On the contrary, the communi-
cation between the sensors and the fusion nodes is supposed to
be non-secure. This scenario reflects the practical situation in
which several low-cost remote sensors are deployed in the area
of interest and data exchange occurs via a non-secure wireless
channel, or when a malicious agent can take control of some of
the remote sensors. Accordingly, it is assumed that the measure-
ment yit , i ∈ Sj , is actually delivered to the fusion node j ∈ N
with probability pi,jd ∈ (0, 1], where the non-unit probability
might be due to a number of reasons (e.g., temporary denial
of service, packet loss, sensor inability to detect or sense the
system, etc.). Further, besides the system-originated measure-
ment yit in (2), it is assumed that the fusion node might receive
fake measurements from some cyber-attacker. In this respect,
the following two cases will be considered.

1) Packet substitution - With some probability pi,jf ∈ [0, 1),
the attacker replaces the system-originated measurement
yit with a fake one ỹi,jt .

2) Extra packet injection - The attacker sends to the fusion
node one or multiple fake measurements indistinguishable
from the system-originated one.

For the subsequent developments, it is also convenient to
define the set Z i,j

t representing the set of measurements (either
true or false) received by fusion node j from sensor i at time t.
For the packet substitution attack:

Z i,j
t =

⎧⎪⎪⎨
⎪⎪⎩

∅, with probability 1 − pi,jd

{yit}, with probability pi,jd (1 − pi,jf )

{ỹi,jt }, with probability pi,jd pi,jf

(3)

where yit is given by (2) and ỹi,jt is a fake measurement provided
by the attacker in place of yit . Conversely, for the extra packet
injection attack the definition (3) is replaced by

Z i,j
t = Y i,j

t ∪ F i,j
t (4)

where

Y i,j
t =

{ ∅, with probability 1 − pi,jd

{yi,jt }, with probability pi,jd
(5)

is the set of system-originated measurements and F i,j
t the finite

set of fake measurements.
Then, the aim of this paper is to address the problem of

distributed joint attack detection and state estimation, which
amounts to jointly estimating, at each time t and in each fusion
node j ∈ N , the state xt and, when present, the attack signal
at only on the basis of: the measurement sets Z i,j

1 . . . ,Z i,j
t

received up to time t from the sensor nodes i belonging to cluster
Sj ; the data received from all adjacent fusion nodes � ∈ Nj .
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III. HYBRID BERNOULLI RANDOM SET FOR JOINT ATTACK

DETECTION AND STATE ESTIMATION

In order to address the joint state/attack estimation problem,
it is convenient to introduce the attack set at time t, At , which
is either equal to the empty set if the system is not under signal
attack at time t or to the singleton {at} otherwise, i.e.

At =

{
∅, if the system is not under signal attack

{at}, otherwise.
(6)

In this paper, the estimation problem is addressed in a Bayesian
framework by exploiting the concept of Random Finite Sets
(RFSs), i.e. variables which are random in both the number
of elements and the values of the elements. In fact, as shown
hereafter, RFSs represent a convenient way to model both the
attack set At and the measurement sets Z i,j

t within a common
framework.

A. Random Set Estimation

An RFS X over X is a random variable taking values in
F(X), the collection of all finite subsets of X. The mathemati-
cal background needed for Bayesian random set estimation can
be found in [14]; here, the basic concepts needed for the subse-
quent developments are briefly reviewed. From a probabilistic
viewpoint, an RFS X is completely characterized by its set den-
sity f(X ), also called FISST (FInite Set STatistics) probability
density. In fact, given f(X ), the cardinality probability mass
function ρ(n) that X have n ≥ 0 elements and the joint PDFs
f (x1 , x2 , . . . , xn |n) over Xn given that X have n elements, are
obtained as follows:

ρ(n) =
1
n!

∫
Xn

f({x1 , . . . , xn}) dx1 · · · dxn

f (x1 , x2 , . . . , xn |n) =
1

n! ρ(n)
f({x1 , . . . , xn})

where f(X ) = f({x1 , . . . , xn}) = n! f(x1 , . . . , xn ) denotes,
using the set and, respectively, vector notation, the FISST prob-
ability density of RFS X . In fact, the multi-object distribution
f({x1 , . . . , xn}) (in set notation) can also be expressed in vec-
tor notation, noting that the probability assigned to the finite set
{x1 , . . . , xn} must be equally distributed among the n! possible
permutations of the same elements. In order to measure proba-
bility over subsets of X or compute expectations of random set
variables, Mahler [14] introduced the notion of set integral for
a generic real-valued function g(X ) of an RFS X as

∫
g(X ) δX = g(∅) +

∞∑
n=1

1
n!

∫
g({x1 , . . . , xn}) dx1 · · · dxn .

(7)
Two specific types of RFSs, i.e. Bernoulli and Poisson RFSs,
will be considered in this work.

1) Bernoulli RFS: A Bernoulli RFS is a random set which
can be either empty or, with some probability r ∈ [0, 1], a
singleton {x} distributed over X according to the PDF p(x).

Accordingly, its set density is defined as follows:

f(X ) =

{
1 − r, if X = ∅
r · p(x), if X = {x}. (8)

2) Poisson RFS: A Poisson RFS is a random finite set with
Poisson-distributed cardinality, i.e.

ρ(n) =
e−μμn

n!
, n = 0, 1, 2, . . . (9)

and elements independently distributed over X according to a
given spatial density p(·). Accordingly, its set density is defined
as follows:

f(X ) = e−μ
∏
x∈X

μ p(x). (10)

B. Hybrid Bernoulli Random Set

We now consider the problem of simultaneous detection and
estimation of the signal attack and of the state of the system
under monitoring, given a set of observations. The key idea is
to use the random set paradigm to model the switching nature
of the signal attack (presence/absence) by means of a Bernoulli
random set A defined in (6) (i.e. a set that, with some proba-
bility r, can be either empty or a singleton depending on the
presence or not of the attack) and the possible injection of fake
measurements by means of a random measurement set Z de-
fined in (3) and (4) as a Bernoulli or Poisson RFS for the packet
substitution or, respectively, extra packet injection attack. It is
worth pointing out that the posed Bayesian estimation problem
is neither standard [13] nor Bernoulli filtering [14], [15], [26]
but is rather a hybrid Bayesian filtering problem that aims to
jointly estimate a Bernoulli random set A for the signal attack
and a random vector x for the system state. An analytical so-
lution of the hybrid filtering problem has been found in [11]
in terms of integral equations that generalize the Bayes and
Chapman-Kolmogorov equations of the Bernoulli filter [26].
The key feature of this hybrid Bernoulli filter is that it jointly
estimates the posterior PDF of the system state and of the signal
attack (when the system is assumed under attack) as well as
the probability of attack existence. This is made possible thanks
to the following definition of hybrid Bernoulli random set. Let
the signal attack input be modeled as a Bernoulli random set
A ∈ B(A), where B(A) = ∅ ∪ S(A) is a set of all finite sub-
sets of the attack probability space A ⊆ Rm , and S denotes the
set of all singletons (i.e., sets with cardinality 1) {a} such that
a ∈ A. Further, let X ⊆ Rn denote the Euclidean space for the
system state vector x. Then, we can define the HBRS (A, x),
as a new state variable which incorporates the Bernoulli attack
random set A and the random state vector x, taking values in
the hybrid space B(A) × X. A HBRS is fully specified by the
(signal attack) probability r of A being a singleton, the PDF
p0(x) defined on the state space X, and the joint PDF p1(a, x)
defined on the joint attack input-state space A × X, i.e.

p(A, x) =

{
(1 − r) p0(x), if A = ∅
r · p1(a, x), if A = {a}. (11)
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Moreover, since integration over B(A) × X takes the form

∫
B(A)×X

p(A, x) δA dx =
∫
p(∅, x) dx

+
∫∫

p({a}, x) da dx (12)

where the set integration with respect to A is defined according
to (7) while the integration with respect to x is an ordinary one,
it is easy to see that p(A, x) integrates to one by substituting (11)
into (12), and noting that p0(x) and p1(a, x) are conventional
probability density functions on X and A × X, respectively.
This, in turn, guarantees that (11) is a FISST probability density
for the HBRS (A, x), which will be referred to as HBRS density
throughout the rest of the paper. Note that, in order to model
the signal attack presence/absence, it is convenient to introduce
a binary random variable εt ∈ {0, 1}, referred to as the attack
existence. By convention, εt = 1 means that the system is un-
der signal attack at time t, i.e. At �= ∅. By contrast, if εt = 0
the system is not under signal attack at time t, i.e. At = ∅.
Thus, the signal attack is effectively modeled by a Bernoulli
random set At which is either empty (if εt = 0) or a singleton
At = {at} when εt = 1. The notion of attack existence is used
to detect the presence (existence) of a signal attack and thus
initiate its estimation by means of the posterior probability of
attack existence rt = Prob(At �= ∅|Zt). In particular, the cen-
tralized hybrid Bernoulli Bayesian filter proposed in [11] for
joint attack detection-state estimation propagates in time, via a
two-step prediction-correction procedure, a joint posterior den-
sity completely characterized by a triplet consisting of: (1) the
probability of existence of the signal attack r; (2) the PDF p0(x)
in the state space for the system under no signal attack; (3) the
PDF p1(a, x) in the joint attack input-state space for the sys-
tem under signal attack. The triplet (r, p0(·), p1(·, ·)) provides
useful information for attack detection, state estimation and at-
tack reconstruction. Specifically, the estimated probability of at-
tack existence is used to take a decision about attack existence.
Decision rules can be based on different criteria, such as the
Maximum A posteriori Probability (MAP) which compares the
a posteriori probabilities Prob(A �= ∅|Z) and Prob(A = ∅|Z)
of the two hypotheses on attack existence Â �= ∅ and Â = ∅
(the system is under signal attack or not) via a simple binary
hypothesis test [27]. Given the decision about signal attack ex-
istence, then secure state estimation can be performed on the
basis of the available posteriors, either p0(·) or p1(·, ·). In fact,
optimal point estimates of the state of the system under nom-
inal operation or, respectively, of the attack input and of the
state of the system under attack can be obtained from p0(·) or
p1(·, ·) according to some criterion, e.g., MAP or Minimum
Mean Squared Error (MMSE). The resulting HBRS filter, as a
sequential Bayesian estimator, recursively estimates the triplet
(r, p0(·), p1(·, ·)) through the prediction and correction steps, by
using the received observation set as well as the measurement
and dynamic models described below.

C. Measurement Models and Likelihood Functions

1) Packet Substitution: Let us consider the packet substi-
tution attack model introduced in Section II-A and denote by
λ(Z i,j

t |At , xt) the likelihood function of the measurement set
defined in (3), which has obviously two possible forms,At being
a Bernoulli random set. In particular, for At = ∅:

λ(Z i,j
t |∅, xt) =

{
1 − pi,jd , if Z i,j

t = ∅
pi,jd
[
(1 − pi,jf ) �i(z|xt) + pi,jf κi,j (z)

]
, if Z i,j

t = {z} (13)

where {z} denotes the singleton whose element represents a de-
livered measurement, i.e. λ({z}|At , xt) is the likelihood that a
single measurement z will be collected. Furthermore, �i(z|xt) is
the standard likelihood function of the system-generated mea-
surement z when no signal attack is present, whereas κi,j (·)
is a PDF modeling the fake measurement ỹi,jt , assumed to be
independent of the system state. Conversely, for At = {at}:

λ(Z i,j
t |{at}, xt) = (14)

{
1 − pi,jd , if Z i,j

t = ∅
pi,jd
[
(1 − pi,jf ) �i(z|at, xt) + pi,jf κi,j (z)

]
, if Z i,j

t = {z}

where �i(z|at, xt) denotes the conventional likelihood of mea-
surement z, due to the system under attack at in state xt . Notice
that, by using the definition of set integral (7), it is easy to
check that both forms (13) and (14) of the likelihood function
λ(Z i,j

t |At , xt) integrate to one.
2) Extra Packet Injection: Let us now consider the extra

packet injection attack model introduced in Section II-A, for
which the measurement set defined in (4) is given by the union
of two independent random sets. As it is clear from (5), Y i,j

t

is a Bernoulli random set (with cardinality |Y i,j
t | at most 1)

which depends on whether the sensor-originated measurement
yit is delivered or not. Conversely, F i,j

t is the random set of
fake measurements that will be modeled hereafter as a Poisson
random set, such that the number of counterfeit measurements
is Poisson-distributed according to (9) and the FISST PDF of
fake-only measurements γ(F i,j

t ) is given by (10) with spatial
distribution κi,j (·) in place of p(·). For the measurement set
(4), the aim is to find the expression of the likelihood function
λ(Z i,j

t |At , xt). To this end, let us first introduce the following
FISST PDF for At = ∅:

η(Y i,j
t |∅, xt) =

{
1 − pi,jd , if Y i,j

t = ∅
pi,jd �i(z|xt), if Y i,j

t = {z}
(15)

and for At = {at}:

η(Y i,j
t |{at}, xt) =

{
1 − pi,jd , if Y i,j

t = ∅
pi,jd �i(z|at , xt), if Y i,j

t = {z}
. (16)
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Then, using the convolution formula [14, p. 385], it follows that

λ(Z i,j
t |At , xt) =

∑
Y i , j
t ⊆Z i , j

t

η(Y i,j
t |At , xt) γ(Z i,j

t \ Y i,j
t ).

(17)
Hence, the likelihood corresponding to At = ∅ is given by

λ(Z i,j
t |∅, xt)

= η(∅|∅, xt) γ(F i,j
t ) +

∑
z∈Z i , j

t

η({z}|∅, xt) γ(Z i,j
t \ {z})

= γ(F i,j
t )
[
1 − pi,jd + pi,jd

∑
z∈Z i , j

t

�i(z|xt)
μκi,j (z)

]
(18)

where (15) and (10) have been used, while for At = {at} we
have

λ(Z i,j
t |{at}, xt)

= η(∅|{at}, xt) γ(F i,j
t ) +

∑
z∈Z i , j

t

η({z}|{at}, xt) γ(Z i,j
t \ {z})

= γ(F i,j
t )
[
1 − pi,jd + pi,jd

∑
z∈Z i , j

t

�i(z|at , xt)
μκi,j (z)

]
. (19)

D. Dynamic Model

Let us finally introduce the dynamic model of the HBRS
(A, x). First, it is assumed that, in the case of a system under
normal operation at time t, an attack at+1 will be launched to
the system by an adversary during the sampling interval with
probability (of attack-birth) pb . On the other hand, if the system
is under attack (i.e., At is a singleton), it is supposed that the
adversarial action will endure from time step t to time step t+ 1
with probability (of attack-survival) ps . It is further assumed that
(A, x) is a Markov process with joint transitional density

m(At+1 , xt+1 |At , xt) = m(xt+1 |At , xt)m(At+1 |At) (20)

which ensues from considering the attack as a stochastic pro-
cess independent of the system state. Such an assumption is
motivated by the fact that (i) at may assume all possible val-
ues, being completely unknown (we consider the most general
model for signal attacks where any value can be injected via the
compromised actuators/sensors), and (ii) the knowledge of at
adds no information on as , if s �= t. In addition, note that

m(xt+1 |At , xt) =

{
m(xt+1 |xt), if At = ∅
m(xt+1 |at, xt), if At = {at}

(21)

are known Markov transition PDFs, while the dynamics of the
Markov process At resulting from the aforestated assumptions
is Bernoulli, described by the following densities:

m(At+1 |∅) =

{
1 − pb, if At+1 = ∅
pb p(at+1), if At+1 = {at+1}

m(At+1 |{at}) =

{
1 − ps, if At+1 = ∅
ps p(at+1), if At+1 = {at+1}

where p(at+1) is the PDF of the attack input vector. Clearly,
when the attack vector is completely unknown, a non-
informative PDF (e.g., uniform in the attack space) can be used
as p(at+1).

In [11], it was shown that, when the above-described mea-
surement and dynamic models are used and a centralized setting
is taken into account, HBRSs are closed with respect to both the
prediction and correction steps of the Bayes filter recursion and
the resulting filter can be derived in closed-form. In order to
make it possible to extend such results to the considered dis-
tributed setting, the problem of how to fuse HBRSs needs to be
addressed in the next section.

IV. DISTRIBUTED FUSION OF HYBRID BERNOULLI

RANDOM SETS

The focus of this section is on how to fuse local HBRS den-
sities coming from multiple fusion nodes. A key issue is how
to consistently fuse such densities taking into account that the
agents may share common information and that such common
information is impossible to single out. Hence, optimal (Bayes)
fusion [18], [19] has to be ruled out and some robust subop-
timal fusion approach has to be undertaken. In this respect,
the paradigm of Kullback-Leibler fusion (average) has been
successfully introduced in [28] for single-object PDFs and has
been extended to FISST densities in [29]. From a notational
point of view, please notice that in this section the fusion agent
j is indicated as subscript while in the other parts of the paper
where also the time t appears, j is indicated as superscript (and
t as subscript).

A. Kullback-Leibler Fusion

Given two FISST probability densities f(X ) and g(X ), let us
first define the Kullback-Leibler divergence (KLD) from g(·) to
f(·) as

DKL (f ‖ g) 

=
∫
f (X ) log

f(X )
g(X )

δX (22)

where the integral in (22) must be interpreted as a set integral
according to the definition (7). Then, the weighted KLA f of the
agent multi-object densities fj , j ∈ N , is defined as follows

f = arg inf
f

∑
j∈N

ωj DKL (f ‖ fj ) (23)

with weights ωj satisfying

ωj ≥ 0,
∑
j∈N

ωj = 1. (24)

Notice from (23) that the weighted KLA of the agent densities is
the one that minimizes the weighted sum of distances from such
densities. In particular, the choice ωj = 1/|N | for any j ∈ N
in (23) provides the (uniformly weighted) KLA which averages
the agent densities giving to all of them the same level of con-
fidence. An interesting interpretation of such a notion can be
given recalling that, in Bayesian statistics, the KLD (22) can be
seen as the information gain achieved when moving from a prior
g(X ) to a posterior f(X ). Thus, according to (23), the average
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PDF is the one that minimizes the sum of the information gains
from the initial multi-object densities. This choice is also coher-
ent with the Principle of Minimum Discrimination Information
(PMDI) according to which the probability density which best
represents the current state of knowledge is the one which pro-
duces an information gain as small as possible (see [30], [31]).
The adherence to the PMDI is important in order to counteract
the so-called data incest phenomenon, i.e. the unaware reuse
of the same piece of information due to the presence of loops
within the network.

The following fundamental result holds.
Theorem 1 (Kullback-Leibler Fusion of General Multi-Object

Densities [29]): The weighted KLA defined in (23) turns out to
be given by

f (X ) =

∏
j∈N [fj (X )]ωj∫ ∏
j∈N [fj (X )]ωj δX

. (25)

Notice that (25) states that the fused density f is nothing but
the normalized weighted geometric mean of the agent densities.
It must be pointed out that the fusion rule (25), which has been
derived as KLA of the local multi-object densities, coincides
with the Generalized Covariance Intersection for multi-object
fusion first proposed by Mahler [19] and also known as Expo-
nential Mixture Density [21].

When the agent densities are HBRS densities, the following
result holds.

Theorem 2: The weighted KLA of agent HBRSs, with den-
sities

pj (A, x) =

{
(1 − rj ) p0

j (x), if A = ∅
rj p

1
j (a, x), if A = {a} , j ∈ N (26)

and fusion weights ωj satisfying (24), is a HBRS with density
given by

p(A, x) =

{
(1 − r) p0(x), if A = ∅
r p1(a, x), if A = {a} (27)

where

r =

∏
j∈N

[rj ]ωj η1

∏
j∈N [rj ]ωj η1 +

∏
j∈N [1 − rj ]ωj η0 (28)

p0(x) =

∏
j∈N [p0

j (x)]
ωj

η0 (29)

p1(a, x) =

∏
j∈N [p1

j (a, x)]
ωj

η1 (30)

with

η0 =
∫ ∏

j∈N
[p0
j (x)]

ωj dx (31)

η1 =
∫ ∏

j∈N
[p1
j (a, x)]

ωj da dx. (32)

Proof: First, we compute the numerator of the KLA fusion in
(25), i.e.,

∏
j∈N [fj (X )]ωj . Substitution of the hybrid Bernoulli

densities (26) of each node into this term yields, if A = ∅,

∏
j∈N

[pj (A, x)]ωj

=
∏
j∈N

[(1 − rj )p0
j (x)]

ωj

=
∏
j∈N

[1 − rj ]ωj
∏
j∈N

[p0
j (x)]

ωj , (33)

otherwise if A = {a},

∏
j∈N

[pj (A, x)]ωj

=
∏
j∈N

[rj p1
j (a, x)]

ωj

=
∏
j∈N

[rj ]ωj
∏
j∈N

[p1
j (a, x)]

ωj . (34)

Then, we compute the denominator of (25), i.e.,∫ ∏
j∈N [fj (X )]ωj δX . According to the integral of hybrid

Bernoulli densities (12), we have

∫ ∏
j∈N

[pj (A, x)]ωj δA dx

=
∏
j∈N

[1 − rj ]ωj
∫ ∏

j∈N
[p0
j (x)]

ωj dx

+
∏
j∈N

[rj ]ωj
∫ ∏

j∈N
[p1
j (a, x)]

ωj da dx

=
∏
j∈N

[1 − rj ]ωj η0 +
∏
j∈N

[rj ]ωj η1 (35)

where η0 and η1 are given by (31) and (32) respectively.
Hence, if A = ∅, we can obtain the weighted KLA p(A, x)

by combining (33) and (35), i.e.,

p(A, x)

=

∏
j∈N [1 − rj ]ωj

∏
j∈N [p0

j (x)]
ωj∏

j∈N [1 − rj ]ωj η0 +
∏

j∈N [rj ]ωj η1

=

∏
j∈N [1 − rj ]ωj η0∏

j∈N [1 − rj ]ωj η0 +
∏

j∈N [rj ]ωj η1 ·
∏

j∈N [p0
j (x)]

ωj

η0

=

(
1 −

∏
j∈N [rj ]ωj η1∏

j [1 − rj ]ωj η0 +
∏

j∈N [rj ]ωj η1

)
·
∏

j∈N [p0
j (x)]

ωj

η0

= (1 − r)p0(x) (36)

where r and p0(x) are given in (28) and (29) respectively.
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Similarly, we can also get the weighted KLA p(A, x) when
A = {a} by combining (34) and (35), i.e.,

p(A, x)

=

∏
j∈N [rj ]ωj

∏
j∈N [p1

j (a, x)]
ωj∏

j∈N [1 − rj ]ωj η0 +
∏

j∈N [rj ]ωj η1

=

∏
j∈N [rj ]ωj η1∏

j∈N [1 − rj ]ωj η0 +
∏

j∈N [rj ]ωj η1 ·
∏

j∈N [p1
j (a, x)]

ωj

η1

= r p1(a, x)
(37)

where p1(a, x) is given in (30).
As a result, the weighted KLA of agent HBRS densities is

still a HBRS density characterized by the quantities r, p0(x)
and p1(a, x) in (28)–(30). �

B. Immunity to Data Incest

The KLA fusion guarantees immunity to double counting of
information [32] and, further, the consensus approach always
gives rise to densities which avoid data incest irrespectively of
the number of consensus iterations being carried out. In this
section, we illustrate this property of KLA fusion in the specific
case of HBRS densities.

Example: Consider only two fusion nodes with associated
conditional HBRS densities pj (A, x|Zj ) for j = 1, 2, where
Zj = ∪i∈Sj Z i,j denotes the set of measurements received by
node j. The collective information set Z1 ∪ Z2 can be decom-
posed into the union of the three disjoint information sets as fol-
lows Z1 ∪ Z2 = (Z1 \ Z2) ∪ (Z2 \ Z1) ∪ (Z1 ∩ Z2). Hence,
the optimal fusion of p1(·, ·) and p2(·, ·) could be obtained as

po(A, x)
∝ p(A, x|Z1 ∪ Z2)

∝ p(A, x|Z1 \ Z2) p(A, x|Z2 \ Z1) p(A, x|Z1 ∩ Z2)

∝ p1(A, x) p2(A, x)
p(A, x|Z1 ∩ Z2)

(38)

if the HBRS densities p(A, x|Z1 ∩ Z2) conditioned to the com-
mon informationZ1 ∩ Z2 were known (the symbol∝ stands for
“proportional to” and the proportionality factor is determined by
imposing that po(·, ·) has unit integral over B(A) × X). How-
ever, in the considered framework wherein nodes repeatedly
fuse information from their neighbors without any knowledge
about the network topology, it is impossible to single out the
common information and thus apply (38).

Hence, some robust suboptimal fusion strategy has to be
adopted. The simplest distributed averaging algorithm obtained
via convex combination [22], [23] of the posteriors is the so-
called “naive” distributed fusion and is given by

pnaive(A, x) 

=

p1(A, x) p2(A, x)∫
p1(·) p2(·) δA dx

∝ p(A, x|Z1 \ Z2) p(A, x|Z2 \ Z1)[p(A, x|Z1 ∩ Z2)]2 .
(39)

It can be observed from (39) that the naive distributed fusion
involves double counting of common information compared
with the optimal fusion in (38).

Another alternative is the KLA fusion of HBRS densities,
adopted in this paper, which provides

p(A, x) 

=

[p1(A, x)]ω1 [p2(A, x)]ω2∫
[p1(A, x)]ω1 [p2(A, x)]ω2 δA dx

∝ [p(A, x|Z1 \ Z2)]ω1 [p(A, x|Z2 \ Z1)]ω2 p(A, x|Z2 ∩ Z1)
(40)

where it can be seen that no double counting of common infor-
mation occurs. The price to be paid is a conservative flattening
[p(Z1 \ Z2 |A, x)]ω1 [p(Z2 \ Z1 |A, x)]ω2 of exclusive informa-
tion. Hence the fusion (27) under (24), turns out to be robust with
respect to data incest. The interested reader is referred to [33]
for a comparison between optimal and suboptimal distributed
fusion rules (including naive and KLA) in terms of state estima-
tion performance for a general linear-Gaussian model with two
fusion nodes.

For the subsequent developments, it is convenient to introduce
the operators ⊕ and � defined as follows:

p (A, x) ⊕ q (A, x) 

=

p (A, x) q (A, x)∫
p(A, x) q(A, x) δA dx

ω � p (A, x) 

=

[p(A, x)]ω∫
[p(A, x)]ω δA dx

,

the above integrals being HBRS integrals as in (12).
The previous example shows that no double counting occurs

in the distributed KLA fusion in the case of two fusion nodes.
Hereafter, it is mathematically proved that, in the general case
with an arbitrary number of fusing nodes, the KLA distributed
fusion ensures immunity to the double counting of informa-
tion irrespective of the unknown common information in the
densities pj . To this end, for each I ∈ F(N ), let YI denote
the information (i.e. measurements and/or prior information)
which is available to all, and only, the nodes belonging to I.
Thus, Y{j} is the information available uniquely to node j. Ac-
cordingly, YN represents the information shared by the entire
network. For instance, if the number of fusing nodes isNf = 3,
we have Y{1,2} = (Z1 ∩ Z2) \ Z3 and Y{1} = Z1 \ (Z2 ∪ Z3).

By construction, the pieces of information YI are taken as
mutually independent so that YI ∩ YI′ = ∅ for any I, I′ ∈
F(N ) with I �= I′. In other words, {YI}I ∈F(N ) provides a
(non-overlapping) partition of the collective information. Let
p (A, x|YI) now be the HBRS density conditioned to the in-
formation YI . Then, in each node i ∈ N , the HBRS density
pi(A, x) can be factorized as

pi (A, x) =
⊕

I ∈F(N ):i∈I
p(A, x|YI) (41)

Theorem 3: Let all the HBRS densities in (26) be factorized
as in (41). Then, the distributed KLA fusion p in (27) turns out
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to be equal to

p(A, x) =
⊕

I ∈F(N )

[(∑
i∈I

ωi

)
� p(A, x|YI)

]
. (42)

Proof: By substituting (41) into (25), and thanks to the prop-
erties of the operators ⊕ and � in [29], we have

p(A, x) =
⊕
i∈N

[ωi � pi (A, x)]

=
⊕
i∈N

⎡
⎣ωi �

⎛
⎝ ⊕

I ∈F(N ):i∈I
p(A, x|YI)

⎞
⎠
⎤
⎦

=
⊕
i∈N

⎡
⎣ ⊕
I ∈F(N ):i∈I

(
ωi � p(A, x|YI)

)⎤⎦

=
⊕

I ∈F(N )

[⊕
i∈I

(
ωi � p(A, x|YI)

)]

=
⊕

I ∈F(N )

[(∑
i∈I

ωi

)
� p(A, x|YI)

]
.

�
It can be seen from (42) that each independent piece of infor-

mation YI is counted only once with weight
∑

i∈I ωi . Since by
construction 0 ≤∑i∈I ωi ≤ 1, one can conclude that no dou-
ble counting of common information occurs. In other words,
the KLA fusion turns out to be inherently robust with respect to
data incest. The price to be paid is a conservative flattening of
independent information which occurs whenever

∑
i∈I ωi < 1.

Remark 1: Similar to the case of two fusion nodes, the opti-
mal Bayesian fusion of all HBRS densities pi , i ∈ N , could be
obtained as

po(A, x) =
⊕

I ∈F(N )

p(A, x|YI) (43)

where each independent piece of information YI is counted only
once with unitary weight. However, the optimal fusion rule re-
quires to single out the common information in order to compute
po , and hence it cannot be implemented in the considered frame-
work as we analyzed in the previous example. When this is not
possible, the KLA provides an effective solution to the HBRS
density fusion problem in view of Theorem 3.

C. Consensus Hybrid Bernoulli filter

Consensus [22], [23] has emerged as a powerful tool for dis-
tributed computation (e.g., averaging, minimization, maximiza-
tion, . . . ) over networks and has found widespread application
in distributed parameter/state estimation [22], [28], [34]–[39].
In essence, consensus aims to perform a collective computation
over a whole network by iterating, in each node j of the network,
a sequence of regional computations of the same type involving
the subnetwork Nj of its in-neighbors. In the context of this
work, it is assumed that each fusion node j ∈ N is provided
with an agent HBRS density pj (A, x) of form (26) and attempts

to compute, in a distributed and scalable way, the collective
Kullback-Leibler fusion

p =
⊕
j∈N

(
1

|N | � pj

)
=

1
|N | �

⎛
⎝⊕
j∈N

pj

⎞
⎠ . (44)

To this end, let pj,0 = pj , then a consensus algorithm for the
computation of (44) takes the iterative form

pj,k+1(A, x) =
⊕
h∈Nj

(ωj,h � ph,k (A, x)) , ∀j ∈ N (45)

where the consensus weights must satisfy the conditions

ωj,h ≥ 0 ∀j, h ∈ N ;
∑
h∈Nj

ωj,h = 1 ∀j ∈ N . (46)

In fact, thanks to the properties of the operators ⊕ and � listed
in [29, p. 513], it can be seen that

pj,k (A, x) =
⊕
h∈N

(
ω

(k)
j,h � ph(A, x)

)
, ∀j ∈ N (47)

where ω(k)
j,h is defined as the element (j, h) of the matrix Ωk

and Ω is the consensus matrix whose generic (j, h)-element
coincides with the consensus weight ωj,h (if h /∈ Nj then ωj,h
is taken as 0). In this respect, it is well known that if Ω is
primitive (i.e. there exists an integer m such that all entries of
Ωm are strictly positive) and doubly stochastic (i.e. all its rows
and columns sum up to one), one has

lim
k→+∞

ω
(k)
j,h =

1
|N | , ∀j, h ∈ N .

Hence, as the number of consensus steps increases, each local
density “tends” to the collective KLA (44).

A necessary condition for the matrix Ω to be primitive is that
the graph G associated with the sensor network be strongly con-
nected [37]. In this case, a possible choice ensuring convergence
to the collective average for undirected graphs is given by the
so-called Metropolis weights [23], [37]

ωj,h =
1

max{|Nj |, |Nh |} , j ∈ N , h ∈ Nj , j �= h

ωj,j = 1 −
∑

h∈Nj ,h �=j
ωj,h .

In Theorem 3 it has been proved that the Kullback-Leibler fu-
sion guarantees immunity to double counting of information and
that, further, the consensus approach always gives rise to densi-
ties which avoid double counting irrespectively of the number
of consensus iterations being carried out.

V. DISTRIBUTED BAYESIAN FILTER FOR JOINT ATTACK

DETECTION AND STATE ESTIMATION

Exploiting Theorem 2 on the Kullback-Leibler fusion of
HBRSs and the HBRS filtering algorithm of [11, Sec. III], it
is possible to derive a distributed joint attack and secure state
estimation algorithm to be described hereinafter. Let at time t
each fusion node j ∈ N have a HBRS density pjt−1(A, x) sum-
marizing the available information on (At−1 , xt−1), obtained
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by processing the measurements Zj
1:t−1



= ∪t−1

s=1 ∪i∈Sj Z i,j
s as

well as by fusing information with the neighbors (i.e. fusion
nodes belonging to Nj ). Then, the local HBRS pjt (·, ·) can be
updated by means of the following steps to be carried out at
each time t in fusion node j.

Distributed HBRS (DHBRS) filter (in node j at time t)
1) Prediction: Obtain pjt|t−1(A, x) from pjt−1(A, x) exploit-

ing the dynamic model according to the results of [11, Th.
3].

2) Correction: Obtain pjt|t(A, x) from pjt|t−1(A, x) exploit-

ing the measurements Zj
t



= ∪i∈Sj Z i,j

t according to the
results of either Theorem 1 (for packet substitution) or of
Theorem 2 (for packet injection) in [11].

3) Fusion: Initialize consensus by setting pj,0(A, x) =
pjt|t(A, x). Then perform L consensus iterations, i.e. (45)
for k = 0, . . . , L− 1, to finally get pj,L (A, x). Then, set
pjt (A, x) = pj,L (A, x).

4) Attack detection & state estimation: Perform attack
detection using rjt from the available current HBRS
pjt (·, ·). Based on the MAP decision rule, given Zj

t ,
assign Âj

t �= ∅ (the system is under signal attack) if
and only if Prob(At �= ∅|Zj

t ) > Prob(At = ∅|Zj
t ), where

Prob(At �= ∅|Zj
t ) = rjt and Prob(At = ∅|Zj

t ) = 1 − rjt ,
i.e. iff rjt > 1/2. Finally, perform secure state estimation
by extracting the estimates x̂0j

t from p0j
t (x) (if Âj

t = ∅) or
x̂1j
t and âjt from p1j

t (a, x) (if Âj
t �= ∅) according to some

criterion (e.g., MAP or MMSE). �
Notice that the first two steps (i.e. prediction and correction)

together make up a local HBRS filtering cycle that allows to up-
date information in node j on the basis of local measurements
from Sj and the system model, while the third (fusion) step
allows to diffuse information throughout the network. Recall
that the HBRS density pjt (A, x) is characterized by the triplet(
rjt , p

0j
t (x), p1j

t (a, x)
)

where the attack existence probability

rjt can be used in the fourth step, e.g. by a MAP detector, to
ascertain whether the system is under attack or not. Based on
this decision about attack existence, a secure state estimate can
be finally extracted from either p0j

t (x) or p1j
t (a, x) according

to some criterion (e.g., MAP or MMSE). Note that whenever
Âj
t �= ∅, an optimal estimate of the unknown attack input can

also be obtained from p1j
t (a, x). This means that, differently

from previous work on secure state estimation of CPSs where
the corrupted information is usually discarded, here we seek
to guarantee not only robustness against attacks, but also per-
formance restoration after the adversary-induced degradation
by means of signal attack reconstruction using all the available
information. For practical implementation of the HBRS filter,
the infinite-dimensional PDFs p0j

t (x) and p1j
t (a, x) need to be

approximated with finite-dimensional parametrizations, e.g., as
Gaussian-mixtures. In [40] it has been shown that Gaussian-
mixture HBRSs are closed under prediction and correction al-
though both steps imply a growth of the number of Gaussian
components that needs to be contrasted by suitable merging
and/or pruning procedures. As far as the fusion step is con-
cerned, this does not preserve the Gaussian-mixture form; how-

ever, good Gaussian-mixture approximations of the KLA of
Gaussian-mixtures can be obtained using the techniques pre-
sented in [29] and [41].

Details on the Gaussian-mixture implementation can be found
in [40] for the HBRS filter prediction and correction steps and
in [29] for the fusion of Gaussian-mixtures.

Before ending this section, the following remarks are in order.
Remark 2: The proposed approach to resilient distributed

state estimation in the presence of malicious attacks relies on
the assumption that the communication between fusion nodes is
secure. In fact, the deployment in the network of trusted nodes
with higher security has been proposed as a possible way of en-
suring resilience to adversarial attacks in distributed computa-
tion (see [42]–[44] and the references therein). In cases wherein
the employment of secured nodes is ruled out, an alternative
approach consists of introducing a redundancy in the commu-
nication topology of the network (for instance by increasing the
connectivity degree of each fusion node) and then applying some
outlier detection technique in order to detect data falsification
attacks [45]. In this respect, since the proposed distributed in-
formation fusion algorithm is consensus-based, it is well-suited
to be modified so as to include some data falsification attack
mitigation technique following, for example, the ideas of [46]–
[48]. For instance, each node j can flag as suspicious a neighbor
� for which the distance DKL (pjt (A, x)||p�t (A, x)) between its
local density and the one received from the neighbor exceeds a
certain threshold τ jt . Then, using the flags received from neigh-
boring nodes, a majority rule can be used to convert the status of
neighbor � from suspicious to attacker [48], [49]. Such flags can
be used to modify the consensus weights, which are reduced for
suspicious nodes and set to zero for nodes flagged as attacker.
Since a full treatment of this issue would go beyond the scope
of this manuscript, we refer the reader to [46]–[48] for in-depth
studies on how to modify the consensus weights and how to
adapt the time-varying thresholds τ jt so that the attackers are
eventually filtered out.

Remark 3: As pointed out in Section IV, the proposed dis-
tributed information fusion algorithm is inherently immune to
the data incest phenomenon. Hence, in accordance with the set-
ting of Section II-B, it is admitted that each sensor node sends its
measurements to more than one fusion center (as it can happen
in the case of broadcast communication), in that the fusion rule
prevents double counting of such information.

VI. NUMERICAL EXAMPLE: WIDE-AREA

MONITORING SYSTEM

In this section, the performance of the proposed distributed
random-set approach for joint attack detection and secure CPS
state estimation is analyzed in the presence of both signal and
extra packet injection attacks as well as uncertainty on mea-
surement delivery. Let us consider the motivating example of a
4-area IEEE 14-bus system (Fig. 1) introduced in Section II-A,
consisting of 5 synchronous generators and 11 load buses. The
parameters relative to transmission lines, generators’ inertia and
damping, nominal power injections and demands are the same
considered in the 14-bus case of [50]. As shown in Fig. 1, the
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Fig. 3. Number of extra fake measurements injected vs. time.

IEEE 14-bus system is partitioned into Nf = 4 distinct clusters
containing b1 = 3, b2 = 4, b3 = 4, and b4 = 3 buses, respec-
tively. The dynamics of the system can be described by the
linearized swing equation [51] derived through the Kron reduc-
tion [52] of the linear small-signal power network model. The
DC state estimation model assumes 1 p.u. (per unit) voltage
magnitudes in all buses and j1 p.u. branch impedance, with j
denoting imaginary unit. The system dynamics is thus repre-
sented by the evolution of n = 10 states comprising both the
rotor angles δi and the frequencies ψi of each generator i in the
4-cluster network. After discretization (with sampling interval
T = 0.01s), the model of the considered wide-area monitoring
system takes the form (1)–(2), where the whole state and the
phase angles in all buses of each cluster are measured by a
network Sj of local sensors. The inter-area communication net-
work is shown in Fig. 2. The system is assumed to be corrupted
by additive zero mean Gaussian white process and measurement
noises with variances σ2

w = 10−5 and σ2
v i = 10−2 . At time step

t = 50 a signal attack vector at = [0.7, 0.2]T p.u. is injected
into the system to abruptly increase the real power demand of
the two victim load buses 3 and 9 with an additional loading of
74% and, respectively, 68%. This type of attack, referred to as
load altering attack in [53], can provoke a loss of synchrony of
the rotor angles and hence a deviation of the rotor speeds of all
generators from the nominal value. In this test case, the probabil-
ities of attack-birth and attack-survival are fixed, respectively, at
pb = 0.05 and ps = 0.95. In each cluster, the system-generated
measurement vector is supposed to be delivered at the local
fusion node with probability pd = 0.99. The extra fake mea-
surements injected into the local sensor channels are modeled
as a Poisson RFS with average number ξ = 30 and probability
density uniformly distributed over the interval [−10, 5], suitably
chosen to emulate system-originated observations. Fig. 3 shows
the resulting number of fake measurements maliciously injected
at each time step.

The Gaussian-mixture implementation of the proposed
Kullback-Leibler fusion with HBRSs in (27) is realized by se-
quentially applying the pairwise fusion rule (28)–(30) for two
fusing nodes |N | − 1 times, where the ordering of the pairwise
fusions is irrelevant. A similar approach has been widely used
in distributed fusion with other RFS based filters [29], [54]. The
parameters of the Gaussian-mixture implementation are chosen
as follows: the pruning threshold is γp = 10−5 ; the merging

Fig. 4. Estimated probability of attack existence rt compared to true attack
existence εt . The signal attack gets into action at time step t = 50 (εt = 1 for
t = 50, . . . , 100).

Fig. 5. True δi and estimated rotor angles δj,it , for node j = 1 and generators
i = 1, . . . , 5.

Fig. 6. Comparison of performance between centralized and distributed (L =
1 and L = 10) HBRS filters in terms of frequency RMSE.

threshold is γm = 4; the maximum number of Gaussian com-
ponents is Nmax = 15.

In this paper the problem of security in CPSs is addressed by
considering, in a unified and general framework, the two funda-
mental aspects of attack detection and secure state estimation.

In this context, the performance of the proposed DHBRS fil-
ter is evaluated in terms of both attack detection and secure
state estimation. Figs. 4–9 show the performance of the dis-
tributed HBRS filter with L = 10 consensus steps. Specifically,
Fig. 4 displays the performance in terms of attack detection
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Fig. 7. Comparison of performance between distributed HBRS filters using
KLA vs. naive fusion (L = 10) in terms of frequency RMSE.

Fig. 8. Consistency check for the DHBRS filter implementing KLA vs. naive
fusion step. The trace of the error covariance matrix P̂ is compared to the actual
mean squared errorP ∗ to check if the two distributed filters guarantee consistent
secure state estimation.

Fig. 9. True and estimated components of the attack vector.

by comparing the estimated probability of attack existence rt
(averaged over 100 independent Monte Carlo trials and all the
fusion nodes) with the true binary random variable of attack ex-
istence εt . As it can be seen, while the proposed DHBRS filter
demonstrates reliable detection of the signal attack, the filter im-
plementing naive instead of KLA fusion (see Section IV-B) er-
roneously estimates the presence of a signal attack for the entire
duration of the simulation, even when εt = 0. The error matrix
of the MAP detector, described in step 4) of the DHBRS filter,
is reported in Table I to evaluate the attack detection accuracy.
The percentage errors, averaged over the number of Monte Carlo

TABLE I
CONFUSION MATRIX (IN %) OF THE MAP DETECTOR

Estimated attack set

Â �= ∅ Â = ∅
True attack set A �= ∅ 98.04 1.96

A = ∅ 0 100

The false alarm and misdetection rates appear as off-
diagonal entries.

runs, show that the MAP decision rule is characterized by null
false alarm rate and low misdetection rate (1.96%) due to a
slight delay in attack detection.

Figs. 5–9 evaluate the performance of the DHBRS filter in
terms of secure state estimation. Fig. 5 provides a comparison
between the true and the estimated values of rotor angles of each
generator and clearly shows how δ1 and δ3 lose synchrony once
the load altering attack gets into action.

The centralized algorithm provides a performance benchmark
for the proposed distributed strategy. Fig. 6 compares the Root
Mean Square Error (RMSE), averaged over all fusion nodes and
Monte Carlo runs, of the frequency estimates obtained with the
DHBRS filter and, respectively, a centralized HBRS filter that
processes measurements from all sensors. It can be observed
that the performance of the DHBRS filters (performing L = 1
and, respectively, L = 10 consensus steps) is comparable to the
one of the centralized algorithm which, in this linear-Gaussian
case, is equivalent to what would be obtained using the optimal
fusion (38). In particular, the error is almost identical for the two
filters when the system is not under attack, while the gap in ac-
curacy becomes more evident when the signal attack is active.
Despite the short diameter of the considered communication
network, the number of consensus steps affects the accuracy of
state estimation when the system is under attack; though ac-
curacy is already satisfactory with a single consensus step, it
improves with L = 10. We also present the performance gain in
terms of state estimation provided by KLA fusion with respect
to the naive approach in Fig. 7, which clearly shows that the
distributed naive filter provides unreliable estimates of the state.
This is due to the fact that naive fusion combines the information
from different nodes under the assumption that the local HBRS
densities are independent when they are actually correlated via
previous information flows propagated among neighbors. As
shown in Fig. 8, this can lead to inconstistent estimates, i.e.
estimates that do not satisfy the consistency condition P̂ � P ∗

[55], where P̂ is the error covariance matrix expressing the un-
certainty associated with the estimate of the state vector and
P ∗ is the actual mean squared error calculated by averaging
the squared estimation error over the Monte Carlo trials. It can
be noticed from Fig. 8 that the above consistency condition
holds for the DHBRS filter performing KLA fusion, while in-
consistent (i.e overconfident) estimates are obtained when the
naive fusion rule is used. Fig. 9 evaluates the performance in
terms of attack reconstruction by comparing the true and esti-
mated components, extracted from p11

t (a, x), of the malicious
signal attack for a single Monte Carlo realization. To provide
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Fig. 10. Comparison between DHBRS (using KLA) and naive filter in terms
of OSPA metric (p = 1, c = 30) of the attack random set At .

Fig. 11. Convergence rate of KLA fusion of HBRS densities. Each local
estimate of rotor angle δ1

j,k in node j = 1, . . . , 4 tends to the collective KLA

δ
1

for k = 1, . . . , L and L = 10.

an unique metric evaluating both attack detection and attack
reconstruction performance, we also consider the well known
OSPA (Optimal SubPattern Assignment) distance [56] for ran-
dom sets, to measure the error between the true and estimated
attack set also taking into account misdetections/false detec-
tions. A comparison between the DHBRS filter using KLA vs.
naive fusion in terms of OSPA metric of order p = 1 and cut-off
value c = 30 is shown in Fig. 10. The OSPA distance highlights
how the use of naive fusion, which is not immune to data in-
cest, leads to false detections before time step t = 50 and less
accurate state estimation with respect to the proposed DHBRS
filter when the system is under signal attack. Finally, the per-
formance of the distributed HBRS filter is assessed in terms of
convergence rate of the proposed consensus algorithm based on
the Kullback-Leibler fusion of HBRSs (step 3 of the DHBRS
filter described in Section V). Fig. 11 shows the behavior of the
distance |δ̄1

j − δ1
j,k | for fusion nodes j = 1, . . . , 4 concerning

the estimated rotor angle of generator 1 as a function of the
number of consensus steps. We can see how each local estimate
δ1
j,k , averaged over all Monte Carlo trials and time steps, tends

to the collective KLA δ
1

for k = 1, . . . , L, i.e. as the number of
consensus steps increases. Analogous results are achieved for
the remaining generators of the power network.

VII. CONCLUSION

The paper has addressed a fundamental issue in the operation
of networked cyber-physical systems (CPSs), i.e. how to detect
incoming cyber-attacks and securely estimate the system state
by means of distributed processing techniques. Different types
of cyber-attacks (i.e. sensor/actuator data corruption, packet sub-
stitution and extra packet injection) and a cluster-based network
configuration, wherein multiple cluster-heads receive data from
remote sensors via non-secure links and exchange processed
information neighborwise via secure links, have been consid-
ered. The joint attack-detection & state estimation problem has
been cast in a Bayesian random set framework using Hybrid
Bernoulli Random Set (HBRS) densities to summarize the avail-
able information on the signal attack and system state as well as
appropriate filtering algorithms to update such densities. Then,
distributed fusion of locally computed HBRSs has been ex-
ploited in order to spread information over the network thus
deriving a novel distributed HBRS filter for secure monitoring
of CPSs. A simulation case-study concerning a wide-area moni-
toring power system has been fully investigated in order to both
motivate the proposed approach and demonstrate its practical
effectiveness. Future work will concern: (i) extension to the
case of non-secure links among cluster-heads; (ii) application
to distributed detection & localization of malicious sources.
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