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Abstract—This paper presents a solution to the problem of se-
quential joint anomaly detection and tracking of a target subject
to switching unknown path deviations. Based on a dynamic model
described by Ornstein-Uhlenbeck (OU) stochastic processes, the
anomaly is represented by a target (e.g., a marine vessel) that
deviates from a preset route by changing its nominal mean
velocity. The Random Finite Set (RFS) framework is used to
represent the switching nature of target’s anomalous behavior in
the presence of spurious measurements and detection uncertainty.
Combining these two ingredients, the problem of jointly detecting
target’s path deviations and estimating its kinematic state can
be formulated within the Bayesian framework, and analytically
solved by means of a hybrid Bernoulli filter that sequentially
updates the joint posterior density of the unknown OU velocity
input (a Bernoulli RFS) and of the target’s state random vector.
We illustrate the effectiveness of the proposed filter, implemented
in Gaussian-mixture form, in a simulated scenario of vessel
tracking for maritime traffic monitoring.

I. INTRODUCTION

With over 80% per cent of global trade by volume, more

than 3.8 billion tons of freight per year moved through the EU

seaports, and approximately 395 million passenger journeys

per year in the seas around the EU region, the importance and

strategic function of maritime transport cannot be underem-

phasized. This is why nations across the globe place a high

priority on ensuring maritime safety and security, and tools

that help maritime surveillance to identify suspicious activity

are extremely valuable. Most common security threats in mar-

itime domain include unauthorised maritime arrivals, illegal,

unreported or unregulated fishing, illegal immigration, drug

smuggling, marine pollution and waste dumping, prohibited

imports/exports, piracy and maritime terrorism.

Maritime surveillance data are increasingly used to achieve

higher levels of situational awareness. Currently sensors used

for maritime surveillance of ports and waterways include

radars, infrared and video cameras, and satellite-based EO

(Electro-Optical) and SAR (Synthetic Aperture Radar) im-

agery. Recently, however, a number of self-reporting maritime

systems have been introduced, mainly for the purpose of

safety in navigation and collision avoidance. For example,

SAR and Vehicle Tracking System (VTS) devices have been

fundamental in supporting maritime surveillance during the

last decades. The most important self-reporting maritime

system is the Automatic Identification System (AIS), which

has been playing an increasingly important role in support
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to maritime surveillance and other activities such as search

& rescue operations, fisheries/environment monitoring, and

anomaly detection. AIS is a self-reporting messaging system,

mandatory for ships over 300 gross tonnage and passenger ves-

sels, which automatically broadcasts data about ship identity,

position, velocity, and other vessel-related information. The

messages transmitted by these self-reporting systems have thus

become an abundant and inexpensive source of information for

maritime surveillance.

Recently, anomaly detection strategies have been proposed

and applied in maritime traffic monitoring [1]–[5] in order

to detect unexpected ship stops or unexpected changes in

course (path deviations), i.e. any vessel’s anomalous behavior

that might be related to potential suspicious activity. Most of

previous work [1]–[4] typically consists of two steps: i) extrac-

tion of maritime traffic patterns via data mining of historical

(training) data, and ii) anomaly detection of vessel’s motion

and prediction under nominal behavior by using unsupervised

learning techniques. More recently, a novel maritime anomaly

detector [5], relying on a hypothesis testing procedure based on

the Generalized Likelihood Ratio statistic, has been proposed

to reveal path deviations during AIS coverage gaps.

This paper aims to exploit the available measurements

(e.g., AIS and radar data of maritime traffic) about a target

following a nominal route in order to sequentially detect any

anomalous behavior of the target, while jointly estimating its

kinematic state. For the dynamic model, the idea is to rely

on the Ornstein-Uhlenbeck stochastic process, which has been

shown [6]–[8] to be a realistic model of ships’ dynamics in

open sea. This model allows us to represent any deviation from

the nominal target’s motion as an unknown input affecting the

dynamics of the object under tracking; indeed, any anomalous

deviation will inevitably result in an unknown contribution to

the mean velocity parameter of the underlying OU process.

In particular, we adopt the random set paradigm to model the

target’s behavior through a Bernoulli RFS that, based on the

nominal or anomalous condition, will result in an empty set

or a singleton, respectively. The same random set framework

allows us to model the presence of a random number of

spurious observations among the available data by means of a

measurement RFS.

As a result, the problem of joint deviation-detection and

target tracking turns out to be a hybrid Bayesian filtering

problem [9]–[14] that aims to sequentially estimate a Bernoulli

random set for the unknown long-run mean velocity input

and, jointly, a random vector for the target state, given all

the incoming measurements collected at each time instant. It
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is worth pointing out that, compared to the static anomaly

detector proposed in [5] under AIS data unavailability, in

this work we look at a similar problem but from a different

perspective, i.e. we address a sequential Bayesian filtering

problem where new measurements are periodically available

according to the radar’s scanning period or the frequency of

AIS reports, and probability pd ∈ (0, 1]. This is motivated

by the fact that the problem of joint detection and tracking

of anomalous path deviations would ideally be dealt online,

as new observations become available. Notice also that the

contribution of this work, considering a single-target scenario

with spurious measurements, could be further extended to

the multiple-target case, by exploiting multi-target tracking

algorithms (see e.g. [15], [16]).

II. BACKGROUND AND PROBLEM STATEMENT

A. Dynamic model based on Ornstein-Uhlenbeck processes

Building upon [6], we model target dynamics with OU

stochastic processes. More precisely, target’s velocity is mod-

eled by means of a stochastic mean-reverting process, which

tends to drift towards a central value, with an attraction that in-

creases with the distance of the process from that central value.

This (long-run mean) velocity represents the desired speed

of the target. The key feature of this dynamic model is that

the velocity process has bounded variance. The target state is

represented by the four-dimensional vector x(t) = [p(t), ṗ(t)],
where p(t) and ṗ(t) are the target’s position and, respectively,

velocity in a two-dimensional Cartesian coordinate system.

The dynamics of the target is thus ruled by the following

stochastic differential equation (SDE):

ẋ(t) = Ax(t) +Bu+Dẇ(t), (1)

where u = [ux, uy]
T is the long-run mean velocity and w(t)

is a standard 2-D Wiener process. The matrices A,B and D
are defined as

A =

[
02 I2
02 −Λ

]
, B =

[
02
Λ

]
, D =

[
02
Ω

]
, (2)

where 02 and I2 are the 2-by-2 null and identity matrices,

respectively, and Λ ∈ R
2×2 quantifies the mean-reversion

effect. If Λ has positive and distinct eigenvalues, Λ can

alternatively be written as Λ = TΘT−1, where Θ = diag(γ).
The diag operator applied to the vector γ = [γ1, γ2] stores its

elements on the diagonal components of a diagonal matrix.

The OU process is the first moment of the solution of (1) and

represents the target evolution, that can finally be written in

matrix form as follows:

xk = T̃Φ(tk − tk−1, γ)T̃
−1

x(tk−1)

+ T̃Ψ(tk − tk−1, γ)T
−1u+ wk, (3)

where T̃ = I2⊗T , ⊗ denoting the Kronecker product. The full

expressions of Φ(t, γ) and Ψ(t, γ) can be found in [6], [17],

along with a more detailed discussion about OU processes.

Note that also a different model, i.e. the nearly-constant

velocity (NCV) model, could be used to detect anomalies [1].

However, this model is inherently unsuitable for the problem

under consideration, which relies on changes of the long-run

mean velocity (a key parameter in OU processes, that, by

contrast, is not taken into account in the NCV model) to detect

and track route deviations.

B. Target under nominal/anomalous behavior

Based on the dynamic model (3) described in Section II-

A using the Ornstein-Uhlenbeck process, the target under

nominal/anomalous behavior can be modeled by

xk+1 =

{
Φ0(δk, γ)xk +Bku

0
k + wk+1, under H0

Φ1(δk, γ)xk +Bku
0
k +Gku

1
k + wk+1, under H1

(4)

where k is the time index; δk = tk − tk−1; xk ∈ R
m

is the target kinematic state; u0
k ∈ R

q is a known input

characterizing a target under hypothesis H0, i.e. that follows its

nominal trajectory (u0
k is the target’s nominal long-run mean

velocity at time k); u1
k ∈ R

q is an uknown input affecting the

dynamics of the target only when it is under hypothesis H1, i.e.

when deviating from its nominal path; Φ0(δk, γ) and Φ1(δk, γ)
are known state transition matrices that describe the target’s

state evolution, in the nominal and, respectively, anomalous

cases; wk is a random process disturbance. The target state is

observed through the following model:

yk = Ckxk + vk (5)

where Ck is a known measurement function and vk is a

random measurement noise. It is also assumed that, due to

the nature of the sensors used, e.g., in maritime surveillance,

the measurement yk is actually received with probability

pd ∈ (0, 1].
The switching anomalous behavior of the target is modelled

by means of an unknown Bernoulli velocity set at time k, U1
k ,

which is either equal to the empty set if the target dynamics

is under H0 at time k or to the singleton {u1
k} otherwise, i.e.

U1
k =

{ ∅, if the target is under H0

{u1
k}, otherwise.

(6)

Due to the possible presence of spurious measurements, we

define the measurement set at time k as

Zk = Yk ∪ Ck (7)

where

Yk =

{ ∅, with probability 1− pd
{yk}, with probability pd

(8)

is the set of target-originated measurements, while Ck is the

finite set of spurious observations. Note that measurement set

(7) represents the information collected (or transmitted) by

a generic sensor (or self-reporting system, e.g., AIS) about

target’s state. This data possibly includes spurious measure-

ments of different nature (e.g., radar clutter). Clearly, in the

case of AIS data, the measurement set Zk will feature Ck = ∅.
Notice also that the unknown mean velocity term appearing

in (4) under H1 is treated, differently from the deterministic

parameter u in (1), as a stochastic process {u1
k}, independent

of x0, {wk+1} and {vk}.
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C. Random-set filtering

Here we briefly review the basic concepts of Bayesian

random-set filtering [18]. A random finite set X over X is

a random variable which takes values in the collection of all

finite subsets of X. The FISST (FInite Set STatistics) notion

of density f(X ), also referred to as set density, is used to

characterize RFSs. Given f(X ), the cardinality probability
mass function ρ(n) that X have n ≥ 0 elements and the joint

distributions f (x1, x2, . . . , xn|n) over X
n conditional upon

|X | = n, can be written as

ρ(n) =
1

n!

∫
Xn

f({x1, . . . , xn}) dx1 · · · dxn

f (x1, x2, . . . , xn|n) =
1

n! ρ(n)
f({x1, . . . , xn}).

In addition, we use the notion of FISST or set integral for a

generic real-valued function g(X ) of an RFS X , i.e.∫
g(X ) δX = g(∅) +

∞∑
n=1

1

n!

∫
g({x1, . . . , xn}) dx1 · · · dxn.

(9)

A specific type of RFS, i.e. the Bernoulli RFS, will be con-

sidered in this work. A Bernoulli RFS X on X has probability

1 − r of being empty, and probability r ∈ [0, 1] of being a

singleton {x} whose element is distributed according to the

PDF p(x) defined over X. The cardinality distribution of a

Bernoulli RFS is a Bernoulli distribution with parameter r,

while the set density is given by (see [18])

f(X ) =

{
1− r, if X = ∅
r · p(x), if X = {x}. (10)

III. HYBRID BERNOULLI FILTER FOR JOINT ANOMALY

DETECTION AND TRACKING

In this section, we present the Hybrid Bernoulli Random Set
(HBRS), a new type of RFS introduced by [9]–[11] in the con-

text of resilient state estimation. The resulting hybrid Bernoulli

state-space model allows us to frame and solve the problem

of joint anomaly (i.e., path deviation) detection and tracking

in a random set-based Bayesian framework. Following this

approach, it is possible to obtain an exact recursion in terms

of integral equations that generalize the Bayes and Chapman-

Kolmogorov equations used for the solution of joint input-and-

state estimation [19], [20] (with a switching unknown input),

and standard Bernoulli filtering [18], [21]–[23] (for a system

with unknown input).

A. Hybrid Bernoulli random set

Let the unknown velocity input at time k be a Bernoulli

random set U1
k ∈ B(U) as in (6), where B(U) = ∅ ∪ S(U) is

a set of all finite subsets of the target velocity space U ⊆ R
q ,

and S denotes the set of all singletons (i.e., sets with cardinality

1) {u1} such that u1 ∈ U. Further, let X ⊆ R
m denote the

Euclidean space for the target state vector.

Based on the definition of HBRS given in [9]–[11], we

consider a new state variable (U1, x), defined on the hybrid

space B(U)×X, which combines a Bernoulli random set, i.e.

U1, and a random state vector x. A HBRS turns out to be fully

specified by i) the probability r of U1 being a singleton, ii)

the PDF p0(x) defined on the state space X, and iii) the joint

PDF p1(u1, x) defined on the joint input-state space U × X,

i.e.

p(U1, x) =

{
(1− r) p0(x), if U1 = ∅
r · p1(u1, x), if U1 = {u1}

. (11)

The set integral over the hybrid state space can be written as∫
B(U)×X

p(U1, x)δU1 dx =

∫
p(∅, x) dx+

∫∫
p({u1}, x) du1 dx

(12)

where the set integration with respect to U1 is defined accord-

ing to (9), while integration with respect to x is ordinary. It can

be easily verified that p(U1, x) integrates to one by substituting

(11) in (12), p0(x) and p1(u1, x) being conventional proba-

bility density functions on X and U × X, respectively. This

means that (11) is a FISST probability density for the HBRS

(U1, x). This density will be referred to as hybrid Bernoulli
density in the remainder of the paper.

The HBRS (U1, x) can be corrected and predicted in a

recursive fashion so as to form a hybrid Bernoulli filter (HBF).

B. Correction step

A complete derivation of the correction step of the hy-

brid Bernoulli filter for discrete-time systems with direct

feedthrough can be found in [10]. Here we summarize the

main results derived for a system with no direct feedthrough,

as the one described by model (4)-(5). The measurement set

Zk is the union of two independent random sets, i.e. Yk

and Ck. As we can see from (8), Yk is a Bernoulli random

set with cardinality 0 or 1 conditional upon the reception of

yk. On the other hand, we assume no prior knowledge on

the number of false measurements, i.e. on the cardinality of

Ck. As a consequence, ρ(n) is modeled as an uninformative

distribution; such an assumption leads to the following FISST

probability density of spurious-only measurements:

η(Ck) ∝ |Ck|!
∏

yk∈Ck
c(yk) (13)

where the PDF c(yk) describes the distribution of false data on

the measurement space Y. In the case of no prior knowledge

assumed on such a distribution, c(yk) can be modeled as an

uninformative PDF over Y. By using (13), the likelihood of the

measurement set Zk can be obtained as stated in the following

lemma. This result can be derived from Lemma 1 in [11] and

by noticing that in this case the likelihood is independent of

U1, since in (5) there is no direct feedthrough of the unknown

velocity input to the output.

Lemma 1: Let |Zk| = ξ, then the multi-object likelihood
function λ(Zk|xk) can be written as

λ(Zk|xk) = η(Zk)

⎡
⎣1− pd + pd

∑
yk∈Zk

�(yk|xk)

ξ c(yk)

⎤
⎦ . (14)
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Note that the first term on the right-hand side corresponds

to the event of no reception of the target-originated mea-

surement, i.e. Ck = Zk, while the second term accounts for

the union of the two disjoint events that one observation of

Zk originated from the target while the remaining ξ − 1 are

spurious measurements, i.e. Ck = Zk \ {yk} for any yk ∈ Zk.

Notice also that, by assuming a Poisson-distributed number

of spurious measurements, (14) reduces to the standard multi-

object likelihood function with clutter (see, e.g., [21]) with ξ,

in this case, denoting the expected cardinality of clutter.

Using the above measurement model, exact correction equa-

tions of the Bayesian random set filter for joint anomaly de-

tection and target tracking can be obtained from the following

application of the Bayes rule:

p(U1
k−1, xk|Zk) =

λ(Zk|xk) p(U1
k−1, xk|Zk−1)

p(Zk|Zk−1)
(15)

where λ(Zk|xk) is given by (14). It can be noticed that, since

model (4)-(5) describes a system with no direct feedthrough,

the first measurement providing information about U1
k−1 is Zk

[19]. This means that input estimation under H1 is delayed

by one time unit and, thus, we need to sequentially update

the hybrid Bernoulli density p(U1
k−1, xk|Zk). From now on,

the notation 〈a, b〉 = ∫
a(x)b(x)dx will be used for the inner

product of two functions.

Theorem 1: Assume that the prior density at time k is given

by the following hybrid Bernoulli density:

p(U1
k−1, xk|Zk−1)

=

{
(1− rk|k−1)p

0
k|k−1(xk), if U1

k−1 = ∅
rk|k−1 · p1k|k−1(u

1
k−1, xk), if U1

k−1 = {u1
k−1}

. (16)

Then, given the measurement RFS Zk in (7), the posterior
density at time k is also hybrid Bernoulli, given by

p(U1
k−1, xk|Zk) =

{
(1− rk|k) p

0
k|k(xk) if U1

k−1 = ∅
rk|k · p1k|k(u1

k−1, xk) if U1
k−1 = {u1

k−1}
(17)

with

rk|k =
1− pd (1−Δ1)

1− pd(1−Δ0 + rk|k−1Δ)
rk|k−1(18)

p0k|k(xk) =

1− pd

[
1−

∑
yk∈Zk

�(yk|xk)

ξ c(yk)

]
1− pd (1−Δ0)

× p0k|k−1(xk) (19)

p1k|k(u
1
k, xk) =

1− pd

[
1−

∑
yk∈Zk

�(yk|xk)

ξ c(yk)

]
1− pd (1−Δ1)

× p1k|k−1(u
1
k−1, xk) (20)

and

Δ0
�
=

∑
yk∈Zk

〈
�(yk|xk), p

0
k|k−1(xk)

〉
ξ c(yk)

(21)

Δ1
�
=

∑
yk∈Zk

〈
�(yk|xk), p

1
k|k−1(u

1
k−1, xk)

〉
ξ c(yk)

(22)

and Δ
�
= Δ0 −Δ1. �

Equations (17)-(20) fully specify the correction step of the

hybrid Bernoulli filter for joint anomaly-detection and track-

ing. Notice that if pd = 1 and rk|k−1 = 1, then rk|k = 1
follows from (18). If we further assume Ck = ∅, then (20)

reduces to the standard Bayes filter correction solving the Joint
Input and State Estimation problem without direct feedthrough

[19], [20]. Under the same assumptions, if rk|k−1 = 0, then

rk|k = 0, and thus (19) reduces to the standard Bayes filter

correction (with no unknow input).

C. Prediction step

In order to derive the prediction equations of the Bayesian

hybrid Bernoulli filter for joint anomaly detection and target

tracking, it is reasonable to assume that the joint transitional

density of (U1, x) at time k + 1 takes the form

p(U1
k , xk+1|U1

k−1, xk) = p(xk+1|U1
k−1, xk) p(U1

k |U1
k−1) (23)

which follows from considering the unknown velocity set as

independent of the system state, as assumed in Section II-B.

From the dynamic model (4), one has

p(xk+1|U1
k−1, xk) = p(xk+1|xk) (24)

where p(xk+1|xk) is a known Markov transition PDF.

The transitional density p(U1
k |U1

k−1) is ruled by two design

parameters pb and ps, chosen in such a way that the event

of the target deviating at time k is more probable when the

target is already detouring at time k − 1. To this end, we

assume that i) a target under nominal behavior at time k − 1,

will start a path deviation, characterized by u1
k, during the

sampling interval δk with probability pb; ii) when, instead,

the target is already deviating at time k − 1 (i.e., U1
k−1 is a

singleton), the anomalous action will carry on from k − 1 to

k with probability ps, and transition model

u1
k = αδku1

k−1 + (1− α)δkζk (25)

where α ∈ [0, 1] and ζk ∼ N (0,Ξ),Ξ
�
= σ2

ζI being a

zero-mean white noise. The tuning of probabilities pb and ps
can lead to different filter’s performance. As an example, the

lower is pb (probability of the target under H0 at time k − 1
starting a new path deviation at time k) the more prudent will

be the filter in announcing the beginning of a new target’s

deviation. Analogously, the higher is ps (probability of the

target under H1 at time k − 1 continuing deviating from

the nominal trajectory at time k) the more reluctant will be

the filter in declaring that the target switched behavior and
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stopped detouring. To sum up, under the above assumptions,

the dynamics of U1
k−1 can be modeled as a Bernoulli Markov

process described by

p(U1
k |∅) =

{
1− pb, if U1

k = ∅
pb p(u

1
k), if U1

k = {u1
k}

(26)

p(U1
k |{u1

k−1}) =

{
1− ps, if U1

k = ∅
ps p(u

1
k|u1

k−1), if U1
k = {u1

k}
(27)

where p(u1
k) is a PDF representing the prior knowledge on

the unknown velocity input u1
k which characterizes a new

deviation started during the interval δk. As typically done in

the literature on unknown input estimation [19], [20], an un-

informative PDF (e.g., uniform over the input space U) can be

used to model p(u1
k) when the velocity input u1 is completely

unknown. This choice, in the Bayesian framework, leads to a

maximum-likelihood (ML) estimation of the unknown input.

Under the above model, an exact recursion for the predicted

density can be obtained, as stated in the following theorem.

Theorem 2: Let p(U1
k−1, xk|Zk) be the posterior hybrid

Bernoulli density at time k of the form (17), completely

specified by the triplet
(
rk|k, p0k|k(xk), p

1
k|k(u

1
k−1, xk)

)
, then

the predicted density, also hybrid Bernoulli, takes the form

p(U1
k , xk+1|Zk) (28)

=

{
(1− rk+1|k) p0k+1|k(xk+1) if U1

k = ∅
rk+1|k · p1k+1|k(u

1
k, xk+1) if U1

k = {u1
k}

where

rk+1|k = (1− rk|k) pb + rk|k ps (29)

p0k+1|k(xk+1) =
(1− rk|k)(1− pb) pk+1|k(xk+1|∅)

1− rk+1|k

+
rk|k(1− ps) pk+1|k(xk+1|{u1

k})
1− rk+1|k

(30)

p1k+1|k(u
1
k, xk+1) =

(1− rk|k) pb pk+1|k(xk+1|∅) p(u1
k)

rk+1|k

+
rk|k ps pk+1|k(u1

k, xk+1|{u1
k})

rk+1|k
(31)

and

pk+1|k(xk+1|∅) =
〈
p(xk+1|xk), p

0
k|k(xk)

〉
(32)

pk+1|k(xk+1|{u1
k})
=

〈
p(xk+1|xk), p

1
k|k(u

1
k−1, xk)

〉
(33)

pk+1|k(u1
k, xk+1|{u1

k})
=

〈
p(xk+1|xk) p(u

1
k|u1

k−1), p
1
k|k(u

1
k−1, xk)

〉
(34)

�
As we can see from (29), the target is predicted to be under

anomalous behavior at time k if either a pre-existing anomaly

persists after time k − 1, or a new u1
k enters into effect at

time k. It is also evident in (31) that the prediction step

involves two separate terms which account for the start of

a new anomalous path deviation and, respectively, for the

continuation of an already-started anomalous behavior. This

two-component expression for the prior density is similar to

the one characterizing the standard Bernoulli filter [21].

Analogously, from (30) we notice that the target is predicted

to be under nominal behavior at time k if either no new

deviations are initiated, or the previously existing (legacy)

anomaly ends and the target switches back to nominal motion

during interval δk.

D. Practical considerations about hybrid Bernoulli filtering

Making use of the results in Theorem 1 and Theorem 2, it

is possible to practically perform simultaneous anomaly detec-

tion and tracking from the available current hybrid Bernoulli

density as described below.

Given the HBRS density p(U1
k−1, xk|Zk), containing the

available information on (U1
k−1, xk) after measurements

Z1:k
�
= ∪k

i=1Zi have been processed, then the current density

can be updated at each time k by means of the following steps.

1) Prediction: Compute p(U1
k , xk+1|Zk) from the posterior

density p(U1
k−1, xk|Zk) by exploiting the OU dynamic

model according to the results of Theorem 2.

2) Correction: Compute p(U1
k , xk+1|Zk+1) from the prior

density p(U1
k , xk+1|Zk) by exploiting measurements

Z1:k+1 according to the results of Theorem 1.

3) Anomaly detection & tracking: Perform anomaly de-

tection using rk+1|k+1 from the available current hybrid

Bernoulli density p(U1
k , xk+1|Zk+1), i.e. based on the

MAP decision rule, assign Û1
k �= ∅ (the target is under

anomalous behavior at time k, i.e. under H1) if and only

if Prob(U1
k �= ∅|Zk+1) > Prob(U1

k = ∅|Zk+1). Lastly,

perform target tracking by maximizing p1k+1|k+1(u
1
k, xk+1)

to obtain a MAP estimate of target’s kinematic state and

an ML estimate of the unknown velocity input (if under

H1), or by maximizing p0k+1|k+1(xk+1) to obtain a MAP

estimate of target’s state (if under H0).

It is also worth mentioning that, likewise standard Bernoulli

filters, the proposed hybrid Bernoulli filter in general does

not admit an exact closed-form solution since the posterior

PDFs of the state to be estimated are infinite-dimensional.

Nevertheless, for linear Gaussian models of the form (4)-

(5) the posterior PDFs in (19) and (20) can be finitely

parameterized by means of linear combinations of Gaussian

components whose growing number can be limited via simple

pruning and merging procedures like the ones described in [24]

in order to enable on-line processing. This Gaussian-mixture

approach can be generalized to nonlinear models and/or non-

Gaussian noises.

IV. VESSEL TRACKING CASE-STUDY

The performance of the proposed hybrid Bernoulli filter,

implemented via Gaussian mixtures, has been tested on a

simulated scenario concerning maritime traffic monitoring.
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In this example, the objective is to detect and track route

deviations of a vessel navigating along a nominal path with

mean velocity u0 = [10, 0]Tm/s. In particular, we assume

that the evolution of vessel’s kinematic state (i.e. position and

velocity) over time follows the discrete-time OU model (4)

with transition matrices Φ0 = Φ1, output matrix C = Im,

m = 4, and input matrix G = B.

For this case-study, we used the following parame-

ters: mean-reverting rate of the underlying OU process

γ1 = γ2 = 0.9 × 10−2, constant sampling interval

δ = 30 minutes, process noise covariance matrix Ω =
diag(10−2, 10−2, 10−4, 10−4), measurement noise covariance

matrix R = diag(103, 103, 101, 101), probabilities of new

anomaly and anomaly-survival pb = 0.001 and ps = 0.1,

pd = 0.9, r1|0 = 0.4, x0 = 0. Both densities p0(·) and p1(·, ·)
have been initialized as single Gaussian components with first

guess mean x̂0
1|0 = [0, 0, 10, 0]T , x̂1

1|0 = [100, 100, 20,−20]T
and covariance P 0

1|0 = P 1
1|0 = diag(104, 104, 102, 102). Then,

we set ũ1
1|0 = [20,−20]T and P̃u1

1|0 = 103 I2 as mean and

covariance of the a-priori PDF p(u1
k).

The spurious measurements have been modeled as uni-

formly distributed over the surveillance area, i.e. over the inter-

val [−10, 2× 103]Km, for the x and y position coordinates,

and over the interval [−50, 50]m/s for the velocity x- and

y-components. False measurements have been generated with

average number d = 0.5. Finally, pruning and merging thresh-

olds for the GM implementation have been set as μp = 10−3

and μm = 3, respectively.

The vessel starts deviating from the nominal route at time

step k = 11 and continue its detour until time k = 26.

As shown in Fig. 1, the proposed filter promptly detects the

anomalous path deviation, as we can see from the estimated

probability of anomaly’s existence rk|k (averaged over 100
Monte Carlo trials) which takes the unitary value as soon as

the target starts its deviation and an abrupt change in velocity

takes place (time step k = 11). Furthermore, we can see

that once the deviation is over, the estimated probability rk|k
goes back to zero within a short time (it goes below 0.5 with

a one-step delay). The performance of the hybrid Bernoulli

filter in terms of long-run mean velocity reconstruction under

nominal/anomalous target behavior is shown in Fig. 2. The

filter keeps tracking the velocity vector with high accuracy in

correspondence of nominal target’s motion; moreover, even

under the unknown target deviation, the HBF succeeds in

remaining locked on to the target’s change in velocity with

only a short time lag. Finally, Fig. 3 shows the RMSE

(averaged over 100 Monte Carlo runs) relative to the estimate

u1
k|k of the unknown velocity input characterizing the target’s

motion under the hypothesis of anomalous behavior H1.

V. CONCLUSION

Building upon the hybrid Bernoulli filtering framework

introduced in [9]–[11] for discrete-time systems with direct

feedthrough and exploiting Ornstein-Uhlenbeck stochastic pro-

cesses to represent target’s dynamics [6], we proposed a novel

Fig. 1: True and estimated probability of target’s path devi-

ation. The estimated rk|k is averaged over 100 Monte Carlo

runs.
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Fig. 2: Single-run performance of the hybrid Bernoulli filter in

terms of long-run mean velocity (x and y components) recon-

struction under both nominal and anomalous target behavior.

The gray band marks the interval [11, 26] ranging from the

start to the finish time step of target’s deviation.
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Fig. 3: Performance of the hybrid Bernoulli filter in terms of

RMSE of the unknown OU velocity estimation when the target

is assumed under anomalous behavior (hypothesis H1) by the

filter.

approach to address the problem of joint anomaly detection

and tracking in the face of unknown path deviations of a

target supposed to follow a preset nominal route. Random

finite sets have been exploited in order to model the switch-

ing nature of target’s anomalous behavior, and the resulting

hybrid Bernoulli filtering problem in the case of no direct

feedthrough on the output has been formulated and solved.

The proposed tools have shown promising results for future
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application in maritime traffic surveillance. Future work will

investigate possible extensions to i) a multiple-model HBF

approach, inspired by [14], for simultaneous estimation of

the OU parameters governing the target’s dynamics; ii) a

multiple-target scenario, by exploiting multi-target algorithms

[15], [16]; iii) the design of resilient monitoring systems that

can perform effectively also in the presence of counterfeit

measurements, e.g. generated via AIS spoofing attacks [25].
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