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Summary

This paper deals with secure state estimation of cyber-physical systems subject to
switching (on/off) attack signals and injection of fake packets (via either packet
substitution or insertion of extra packets). The random set paradigm is adopted
in order to model, via random finite sets (RFSs), the switching nature of both sys-
tem attacks and the injection of fake measurements. The problem of detecting
an attack on the system and jointly estimating its state, possibly in the presence
of fake measurements, is then formulated and solved in the Bayesian framework
for systems with and without direct feedthrough of the attack input to the out-
put. This leads to the analytical derivation of a hybrid Bernoulli filter (HBF) that
updates in real time the joint posterior density of a Bernoulli attack RFS and
of the state vector. A closed-form Gaussian mixture implementation of the pro-
posed HBF is fully derived in the case of invertible direct feedthrough. Finally,
the effectiveness of the developed tools for joint attack detection and secure state
estimation is tested on two case studies concerning a benchmark system for
unknown input estimation and a standard IEEE power network application.
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1 INTRODUCTION

Cyber-physical systems (CPSs) are complex engineered systems arising from the integration of computational resources
and physical processes, tightly connected through a communication infrastructure. Typical examples of CPSs include
next-generation systems in building and environmental monitoring/control, health care, electric power grids, transporta-
tion and mobility, and industrial process control. While, on one hand, advances in CPS technology will enable enhanced
autonomy, efficiency, seamless interoperability, and cooperation, on the other hand, the increased interaction between
cyber and physical realms is unavoidably providing novel security vulnerabilities, which make CPSs subject to nonstan-
dard malicious threats. Recent real-world attacks, such as the Maroochy Shire sewage spill, the Stuxnet worm sabotaging
an industrial control system, and the lately reported massive power outage against Ukrainian electric grid,1 have brought
into particularly sharp focus the urgency of designing secure CPSs. It is worth pointing out that, in presence of malicious
threats against CPSs, standard approaches extensively used for control systems subject to benign faults and failures are
no longer suitable. Moreover, the design and implementation of defense mechanisms usually employed for cybersecu-
rity can only guarantee limited layers of protection, since they do not take into account vulnerabilities like the ones on
physical components. This is why recent research efforts on the design of secure systems have explored different routes.
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Preliminary work addressed the issues of attack detection/identification and proposed attack monitors for determinis-
tic control systems.2 Secure strategies have been studied for replay attacks3,4 where the adversary first records and then
replays the observed data, as well as for denial-of-service (DoS) attacks5,6 disrupting the flow of data. Moreover, active
detection methods have been designed in order to detect stealthy attacks via manipulation of, eg, control inputs7 or
dynamics.8 Over the last few years, the problem of secure state estimation, ie, capable of reconstructing the state even
when the CPS of interest is under attack, has gained considerable attention.9-17 Initial work considered a worst-case
approach for the special class of SISO systems.9 Under the assumption of linear systems subject to an unknown but
bounded number of false-data injection attacks on sensor outputs, the problem for a noise-free system has been cast
into an 𝓁0-optimization problem, which can be relaxed as a more efficient convex problem10 and, in turn, adapted to
systems with bounded noise.11 Further advances tried to tackle the combinatorial complexity of the problem by resort-
ing to satisfiability modulo theories12 and investigated, in the same context, the case of Gaussian measurement noise13

and the concept of observability under attacks.14 Most recently, deterministic models of the most popular attack policies
have been presented based on adversary's resources and system knowledge,15 and secure state estimation of CPSs has
been addressed16 by modeling in a stochastic framework the attacker's decision-making by assuming Markov (possibly
uninformative) decision processes instead of unknown or worst-case models.

Although the literature on attack-resilient state estimation is quite abundant, most of the existing contributions have
adopted a deterministic (worst-case) approach and/or have been restricted to linear systems. In practice, the system mon-
itor (defender) might have some (even no) probabilistic prior knowledge on the attacker's strategy and the CPS of interest
might easily be affected by nonlinearities. In this respect, a Bayesian approach where prior knowledge on the attacks is
characterized in terms of probability distributions and nonlinearities are possibly handled by particle filtering or Gaussian
mixture (GM) methods seems well suited and will be pursued in this paper. This allows great flexibility in that knowl-
edge available to the attack monitor can range from complete knowledge to no prior knowledge (uninformative prior)
depending on the assumed distributions.

Specifically, in this paper, three different types of adversarial attacks on CPSs are considered: (i) signal attack, ie, signal
of arbitrary magnitude and location injected (with known structure) to corrupt sensor/actuator data, (ii) packet substi-
tution attack, describing an intruder that possibly intercepts and then replaces the system-generated measurement with
a fake (unstructured) one, and (iii) extra packet injection, a new type of attack against state estimation, already intro-
duced in information security,18,19 in which multiple counterfeit observations (junk packets) are possibly added to the
system-generated measurement. Note that the key feature distinguishing signal attacks on sensors from packet substi-
tution relies on the fact that the former are assumed to alter the measurement through a given structure (ie, known
measurement function), whereas the latter mechanism captures integrity attacks that spoof sensor data packets with no
care of the model structure. By considering both structured and unstructured injections, we do not restrict the type of
attack the adversary can enforce on the sensor measurements. Please notice that, as a further by-product, the Bayesian
approach with uninformative prior can also deal with the situation in which the attacker has the ability to choose
arbitrarily large attack and/or fake measurements, while the worst-case attack paradigm in such a case is not viable.

The present paper aims to address the problem of simultaneously detecting a signal attack while estimating the state
of the monitored system, possibly in presence of fake measurements independently injected into the system's monitor by
cyberattackers. A random set attack modeling approach is undertaken by representing the signal attack presence/absence
by means of a Bernoulli random set (BRS) (ie, a set that, with some probability, can be either empty or a singleton depend-
ing on the presence or not of the attack) and by taking into account possible fake measurements by means of a random
measurement set. We follow the approach of Forti et al17 and formulate the joint attack detection–state estimation problem
within the Bayesian framework as the recursive determination of the joint posterior density of the signal attack Bernoulli
set and of the state vector at each time given all the measurement sets available up to that time. Strictly speaking, the
posed Bayesian estimation problem is neither standard20 nor Bernoulli filtering21-24 but is rather a hybrid Bayesian fil-
tering problem that aims to jointly estimate a BRS for the signal attack and a random vector for the system state. An
analytical solution of the hybrid filtering problem has been found in terms of integral equations that generalize the Bayes
and Chapman-Kolmogorov equations of the Bernoulli filter. In particular, the proposed hybrid Bernoulli Bayesian filter
for joint attack detection–state estimation propagates in time, via a two-step prediction-correction procedure, a joint pos-
terior density completely characterized by a triplet consisting of (1) a signal attack probability, (2) a probability density
function (PDF) in the state space for the system under no signal attack, and (3) a PDF in the joint attack input-state space
for the system under signal attack.

The adopted approach enjoys the following positive features: (1) it encompasses in a unique framework different types
of attacks (signal attacks, packet substitution, extra packet injection, temporary DoS, etc); (2) it takes into account the
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presence of disturbances and noise and deals with general nonlinear systems; (3) it propagates probability distributions
of the system state, attack signal, and attack existence, which can be useful for, respectively, real-time dynamic state
estimation, attack reconstruction, and security decision-making. Notice that, unlike most previous work cited above, in
the present paper, we address the problem from the estimator's perspective and, hence, we cannot assume any specific
strategy for the attacker. This motivates the modeling of the signal attack as a switching unknown input affecting the
system.

Preliminary work on Bayesian state estimation against switching unknown inputs and extra packet injection was carried
out by Forti et al.17 The present paper extends this preliminary work in the following directions.

1. It also considers the packet substitution attack (in addition to the already considered extra packet injection attack).
This novel type of attack refers to the practically relevant situation wherein the attacker has the ability to inter-
cept and manipulate packets sent to the system monitor so as to replace system-originated measurements by fake
ones but, unlike the extra packet injection attack, cannot send additional indistinguishable packets containing fake
measurements to confuse the system monitor.

2. It provides the full derivation of a closed-form solution of the posed Bayesian filtering problem for linear Gaussian
models based on a GM approach. This allows a computationally efficient implementation of the proposed joint attack
detector-state estimator also generalizable to nonlinear models via extended or unscented (instead of standard) Kalman
filtering techniques.

3. It considers also the case of no direct feedthrough of the attack input into the observed output.

The main challenge has been to provide an unifying framework to deal with different types of attacks/faults, possible
nonlinearities, presence of noise and disturbances, and, at the same time, produce implementable algorithms, via GM
techniques, that in real time are able to detect attacks and safely monitor the plant state. It is the authors' opinion that
Bayesian random set filtering can promote significant advances in the research on security of CPSs providing theoretically
principled and flexible tools that can be used in many practical scenarios.

The rest of this paper is organized as follows. Section 2 introduces the considered attack models and provides the neces-
sary background on joint input and state estimation (JISE) as well as on random set estimation. Sections 3 and 4 formulate
and solve the joint attack detection–state estimation problem of interest in the Bayesian framework. Section 5 provides
detailed derivations of the GM hybrid Bernoulli filter (HBF) for linear Gaussian models. Then, Section 6 demonstrates the
effectiveness of the proposed approach via numerical simulations on a benchmark example taken from the literature on
resilient state estimation for CPSs25 as well as on a practical application pertaining to the monitoring of power electrical
networks. Finally, Section 7 ends this paper with concluding remarks and perspectives for future work.

2 PROBLEM SETUP AND PRELIMINARIES

2.1 System description and attack model
Let the discrete-time CPS of interest be modeled by

xk+1 =

{
𝑓 0

k (xk) + wk, under no attack
𝑓 1

k (xk, ak) + wk, under attack,
(1)

where k is the time index; xk ∈ ℝn is the state vector to be estimated; ak ∈ ℝm, called attack vector, is an unknown input
affecting the system only when it is under attack; 𝑓 0

k (·) and 𝑓 1
k (·, ·) are known state transition functions that describe the

system evolution in the no-attack and, respectively, attack cases; wk is a random process disturbance also affecting the
system. For monitoring purposes, the state of the above system is observed through the measurement model

𝑦k =

{
h0

k(xk) + vk, under no attack
h1

k(xk, ak) + vk, under attack,
(2)

where h0
k(·) and h1

k(·, ·) are known measurement functions that refer to the no-attack and, respectively, attack cases; vk is
a random measurement noise. It is assumed that the measurement yk is delivered with probability pd ∈ (0, 1], where the
nonunit probability might be due to a number of reasons (eg, temporary denial of service, packet loss, and sensor inability
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to detect or sense the system). The attack modeled in (1)-(2) via the attack vector ak is usually referred to as signal attack.
While for ease of presentation, only the case of a single attack model is taken into account, multiple attack models26 could
be accommodated in the considered framework by letting (1)-(2) depend on a discrete variable, say, 𝜈k, which specifies
the particular attack model and has to be estimated together with ak. Besides the system-originated measurement yk in
(2), it is assumed that the system monitor might receive fake measurements from some cyberattacker. In this respect, the
following two cases will be considered.

1. Packet substitution: With some probability pf ∈ [0, 1), the attacker replaces the system-originated measurement yk with
a fake one 𝑦

𝑓

k (see Figure 1).
2. Extra packet injection: The attacker sends to the monitor one or multiple fake measurements indistinguishable from

the system-originated one (see Figure 2).

For the subsequent developments, it is convenient to introduce the attack set at time k, k, which is either equal to the
empty set if the system is not under signal attack at time k or to the singleton {ak} otherwise, ie,

k =

{
∅, if the system is not under signal attack
{ak}, otherwise.

It is also convenient to define the measurement set at time k, k. For the packet substitution attack (Figure 1),

k =
⎧⎪⎨⎪⎩
∅, with probability 1 − pd

{𝑦k}, with probability pd(1 − p𝑓 )
{𝑦𝑓k }, with probability pd p𝑓 ,

(3)

where yk is given by (2) and 𝑦
𝑓

k is a fake measurement provided by the attacker in place of yk. Conversely, for the extra
packet injection attack (Figure 2) the definition (3) is replaced by

k = k ∪ k, (4)

where

k =

{
∅, with probability 1 − pd

{𝑦k}, with probability pd
(5)

is the set of system-originated measurements and k the finite set of fake measurements.
The aim of this paper is to address the problem of joint attack detection and state estimation, which amounts to jointly

estimating, at each time k, the state xk and signal attack set k given the set of measurements k △
= ∪k

i=1i up to time k.

FIGURE 1 Packet substitution attack [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 2 Extra packet injection attack [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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2.2 Joint input and state estimation
This section recalls the Bayesian approach to JISE27 that is exploited, in this work, in order to estimate, besides the plant
state, also the signal attack input to which the CPS may be subjected. Consider a system affected by an unknown input ak{

xk+1 = 𝑓 (xk, ak) + wk

𝑦k = h(xk, ak) + vk.
(6)

In JISE,27-29 it is customary to distinguish the case in which there is a direct feedthrough of the unknown input ak to the
output yk from the case of no direct feedthrough.

Direct feedthrough: Suppose that there is an invertible direct feedthrough27,28 of the unknown input ak to the output
yk, which amounts to assuming that the function h(x, a) is injective with respect to a for any x. In this case, the Bayesian
approach is based on the recursive computation of the joint PDF p(ak, xk | yk) of the unknown input ak and state xk condi-
tioned on all the information available up to the current time. Given the conditional PDF, optimal estimates of ak and xk
can be computed according to any given criterion, the most typical ones being maximum a posteriori probability (MAP)
and minimum mean square error (MMSE). In this respect, it is worthy to point out that the two methods (MAP and
MMSE) are actually both reasonable choices corresponding to extract either the mean (MMSE) or the mode (MAP) from
the conditional PDF. If such a conditional PDF is highly multimodal, eg, due to the presence of multiple counterfeit mea-
surements (extra packet injection attack), the MAP approach, ie, extracting from the posterior density the Gaussian mean
with the highest weight, seems preferable. The joint conditional PDF can be computed by means of a two-step procedure
of correction and prediction. Suppose that, at time k− 1, the predicted posterior p(ak, xk | yk−1) has been computed. Then,
at time k, when the new measurement yk is collected, in the correction step, the new conditional PDF p(ak, xk | yk) can be
obtained by means of the Bayes rule

p
(

ak, xk |𝑦k) = p(𝑦k |ak, xk)p
(

ak, xk |𝑦k−1)
p
(
𝑦k |𝑦k−1

) . (7)

Conversely, the prediction step concerns the propagation of the conditional PDF from time k to time k+1. In the literature
on unknown input estimation, it is usually supposed that the values ak and xk of unknown input and, respectively, of
state at time k do not provide any information on the value ak+1 taken by the unknown input at time k + 1. Accordingly,
p(ak+1, xk+1 | yk) takes the form

p
(

ak+1, xk+1 |𝑦k) = p
(

xk+1 |𝑦k) p(ak+1), (8)

where the conditional PDF p(xk+1 | yk) is computed via the Chapman-Kolmogorov equation

p
(

xk+1 |𝑦k) = ∫∫ p(xk+1 |ak, xk)p
(

ak, xk |𝑦k) dakdxk. (9)

With this respect, when no information on the unknown input ak+1 is supposed to be available, it is customary27 to resort
to the so-called principle of indifference and take p(ak+1) as an uninformative (flat) prior. It is easy to check that, in this
case, the conditional PDF p(ak, xk | yk) resulting from the correction step can be rewritten as

p
(

ak, xk |𝑦k) = p(𝑦k |ak, xk)p
(

xk |𝑦k−1)
∫ ∫ p(𝑦k |a, x)p(x |𝑦k−1)dx da

. (10)

Then, maximization of (10) with respect to xk and ak provides a MAP estimate of xk and a Maximum Likelihood (ML)
estimate of the unknown input ak. This is the approach followed by Fang et al27 that allows to generalize the traditional
techniques for linear systems28,29 to general nonlinear systems (see Theorems 1 and 2 in the work of Fang et al27).

No direct feedthrough: Suppose that there is no direct feedthrough27,29 of the unknown input ak to the output yk so that
yk = h(xk)+vk. In this case, the unknown input must be estimated with one step delay, since yk+1 is the first measurement
containing information on ak. Hence, the Bayesian approach is based on the recursive computation of the joint PDF
p(ak−1, xk | yk) of the unknown input ak−1 and state xk conditioned on all the information available up to time k. Suppose
that, at time k−1, the predicted posterior p(ak−1, xk | yk−1)has been computed. Then, at time k, when the new measurement
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yk is collected, in the correction step, the new conditional PDF p(ak−1, xk | yk) can be obtained by means of the Bayes rule

p
(

ak−1, xk |𝑦k) = p(𝑦k |xk)p
(

ak−1, xk |𝑦k−1)
p
(
𝑦k |𝑦k−1

) , (11)

while, in the prediction step, p(ak, xk+1 | yk) takes the form

p
(

ak, xk+1 |𝑦k) = p
(

xk+1 |ak, 𝑦
k) p(ak), (12)

where the conditional PDF p(xk+1 | ak, yk) is computed via the Chapman-Kolmogorov equation

p
(

xk+1 |ak, 𝑦
k) = ∫ p(xk+1 |ak, xk)p

(
xk |𝑦k) dxk. (13)

When no information on the unknown input ak is supposed to be available so that p(ak) is taken as an uninformative
(flat) prior, the conditional PDF p(ak−1, xk | yk) resulting from the correction step can be rewritten as

p
(

ak−1, xk |𝑦k) = p(𝑦k |xk)p
(

xk |ak−1, 𝑦
k−1)

∫ ∫ p(𝑦k |x)p(x |a, 𝑦k−1)dx da
. (14)

2.3 Random set estimation
A random finite set (RFS)  over 𝕏 is a random variable taking values in ℱ (𝕏), the collection of all finite subsets of 𝕏.
The mathematical background needed for Bayesian random set estimation can be found in Mahler's book;22 here, the
basic concepts needed for the subsequent developments are briefly reviewed. From a probabilistic viewpoint, an RFS 
is completely characterized by its set density𝑓 (), also called FISST (FInite Set STatistics) density. In fact, given 𝑓 (), the
cardinality probability mass function 𝜌(n) that  have n ≥ 0 elements and the joint PDFs 𝑓 (x1, x2, … , xn |n) over 𝕏n

given that  have n elements are obtained as follows:

𝜌(n) = 1
n! ∫

𝕏n

𝑓 ({x1, … , xn})dx1 … dxn

𝑓 (x1, x2, … , xn |n) = 1
n!𝜌(n)

𝑓 ({x1, … , xn}).

In order to measure probability over subsets of 𝕏 or compute expectations of random set variables, Mahler22 introduced
the notion of set integral for a generic real-valued function g() of an RFS  as

∫ g()𝛿 = g(∅) +
∞∑

n=1

1
n! ∫ g({x1, … , xn})dx1 … dxn. (15)

In particular, in this work, we will consider the Bernoulli RFS, ie, a random set that can be either empty or, with some
probability r ∈ [0, 1], a singleton {x} whose element is distributed over 𝕏 according to the PDF p(x). Accordingly, its set
density is defined as follows:

𝑓 () =

{
1 − r, if  = ∅
r · p(x), if  = {x}.

(16)

Please notice that the above equation as well as all subsequent definitions of probability distributions involving a Bernoulli
set argument have two branches on the right-hand side depending on whether the Bernoulli argument is empty or a
singleton.
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3 BAYESIAN RANDOM SET FILTER FOR JOINT ATTACK DETECTION AND
STATE ESTIMATION: DIRECT FEEDTHROUGH CASE

Let us suppose that, when the attack input is present, there is a direct feedthrough from the attack ak to the output yk. More
specifically, in accordance with the considerations of Section 2.2, it is assumed that, when the attack input is present, the
mapping from ak to yk is full rank, ie, invertible. Let the attack input at time k be modeled as a BRS k ∈ ℬ(𝔸), where
ℬ(𝔸) = ∅ ∪ 𝒮 (𝔸) is a set of all finite subsets of the attack space 𝔸 ⊆ ℝm, and 𝒮 (𝔸) denotes the set of all singletons (ie,
sets with cardinality 1) {a} such that a ∈ 𝔸. Further, let 𝕏 ⊆ ℝn denote the state space for the system state vector, then we
can define the hybrid BRS (HBRS) (, x) as a new state variable that incorporates the Bernoulli attack random set  and
the random state vector x, taking values in the hybrid space ℬ(𝔸) ×𝕏. An HBRS is fully specified by the (signal attack)
probability r of  being a singleton, the PDF p0(x) defined on the state space 𝕏, and the joint PDF p1(a, x) defined on the
joint attack input state space 𝔸 ×𝕏, ie,

p(, x) =

{
(1 − r)p0(x), if  = ∅
r · p1(a, x), if  = {a}.

(17)

Moreover, since integration over ℬ(𝔸) ×𝕏 takes the form

∫
ℬ(𝔸)×𝕏

p(, x)𝛿dx = ∫ p(∅, x)dx + ∫∫ p({a}, x)dadx, (18)

where the set integration with respect to  is defined according to (15) while the integration with respect to x is an
ordinary one, it is easy to see that p(, x) integrates to one by substituting (17) in (18), and noting that p0(x) and p1(a, x)
are conventional PDFs on 𝕏 and 𝔸 ×𝕏, respectively. This, in turn, guarantees that (17) is a FISST probability density for
the HBRS (, x). The notion of attack existence, embodied by parameter r in (17), is introduced so as to detect the presence
(existence) of a signal attack and hence initiate its estimation. Because of this concept, as shown later on, the probability
of attack existence is directly computed by the filter.

In this paper, the attack input is modeled as a BRS to account for the fact that the attack can switch (from off to on
or vice-versa) at any time with no prior knowledge on the attack onset/termination from the system monitor side. The
switching nature of the attack could be tackled in different ways, eg, with multiple models (one for the attack and another
for the no-attack cases), but the random set approach undertaken in this work turns out to be advantageous also to include
other type of attacks, specifically packet substitution and extra packet injection to be considered in the next section.

3.1 Measurement models and correction
3.1.1 Packet substitution
Let us consider the packet substitution attack model introduced in Section 2.1 and denote by 𝜆(k |k, xk) the likelihood
function of the measurement set defined in (3), which has obviously two possible forms, k being a BRS. In particular,
for k = ∅,

𝜆(k |∅, xk) =

{
1 − pd, if k = ∅
pd[(1 − p𝑓 )𝓁(𝑦k |xk) + p𝑓 𝜅(𝑦k)], if k = {𝑦k},

(19)

where {yk} denotes the singleton whose element represents a delivered measurement, ie, 𝜆({𝑦k} |k, xk) is the likeli-
hood that a single measurement yk will be collected. Furthermore, 𝓁(yk | xk) is the standard likelihood function of the
system-generated measurement yk when no signal attack is present, whereas 𝜅(·) is a PDF modeling the fake measurement
𝑦
𝑓

k , assumed to be independent of the system state. Conversely, for k = {ak},

𝜆(k |{ak}, xk) =

{
1 − pd, if k = ∅
pd[(1 − p𝑓 )𝓁(𝑦k |ak, xk) + p𝑓 𝜅(𝑦k)], if k = {𝑦k},

(20)

where 𝓁(yk | ak, xk) denotes the conventional likelihood of measurement yk, due to the system under attack ak in state xk.
Notice that, by using the definition of set integral (15), it is easy to check that both forms (19) and (20) of the likelihood
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function 𝜆(k |k, xk) integrate to one. Using the aforementioned measurement model, it is possible to derive the exact
correction equations of the Bayesian random set filter for joint attack detection and state estimation, in case of substitution
attack.

Theorem 1. (Correction under packet substitution attack). Suppose that the prior density at time k is hybrid Bernoulli
of the form

p(k, xk |k−1) =

{
(1 − rk |k−1)p0

k |k−1(xk), if k = ∅
rk |k−1 · p1

k |k−1(ak, xk), if k = {ak}.
(21)

Then, given the measurement random set k defined in (3), also the posterior density at time k turns out to be hybrid
Bernoulli of the form

p(k, xk |k) =

{
(1 − rk |k)p0

k |k(xk), if k = ∅
rk |k · p1

k |k(ak, xk), if k = {ak},
(22)

completely specified by the triplet(
rk |k, p0

k |k(xk), p1
k |k(ak, xk)

)
=
(

rk |k−1, p0
k |k−1(xk), p1

k |k−1(ak, xk)
)
,

if k = ∅ or, if k = {𝑦k}, by

rk |k =
(1 − p𝑓 )Ψ1 + p𝑓𝜅(𝑦k)

(1 − p𝑓 )(Ψ0 − rk |k−1Ψ) + p𝑓𝜅(𝑦k)
rk |k−1 (23)

p0
k |k(xk) =

(1 − p𝑓 )𝓁(𝑦k |xk) + p𝑓𝜅(𝑦k)
(1 − p𝑓 )Ψ0 + p𝑓𝜅(𝑦k)

p0
k |k−1(xk) (24)

p1
k |k(ak, xk) =

(1 − p𝑓 )𝓁(𝑦k |ak, xk) + p𝑓𝜅(𝑦k)
(1 − p𝑓 )Ψ1 + p𝑓𝜅(𝑦k)

p1
k |k−1(ak, xk), (25)

where
Ψ0

△
= ∫ 𝓁(𝑦k |xk)p0

k |k−1(xk)dxk (26)

Ψ1
△
= ∫∫ 𝓁(𝑦k |ak, xk)p1

k |k−1(ak, xk)dakdxk (27)

Ψ
△
= Ψ0 − Ψ1. (28)

Proof. The correction equation of the Bayes random set filter for joint attack detection and state estimation follows
from a generalization of (7), which yields

p(k, xk |k) =
𝜆(k |k, xk)p

(k, xk |k−1)
p
(k |k−1

) , (29)

where 𝜆(k |k, xk) is given by (19) and (20), while

p
(k |k−1) = ∫∫ 𝜆(k |k, xk)p

(k, xk |k−1) 𝛿kdxk

= ∫ 𝜆(k |∅, xk)p
(
∅, xk |k−1) dxk + ∫∫ 𝜆(k |{ak}, xk)p

(
{ak}, xk |k−1) dakdxk. (30)

For the case k = ∅, the above reduces to
p(∅ |k−1) = 1 − pd, (31)

by substituting (19)-(20) and (21) in (30) and simply noting that ∫ p0
k |k−1(xk)dxk = 1 and ∫∫ p1

k |k−1(ak, xk)dakdxk = 1.
The posterior probability of attack existence rk|k can be obtained from the posterior density (29) with k = ∅ via

rk |k = 1 − ∫ p
(
∅, xk |k) dxk, (32)
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where, using (19), (21), and (31) in (29), we have

p
(
∅, xk |k) = (1 − rk |k−1)p0

k |k−1(xk). (33)

Moreover, p0
k |k(xk) = p(∅, xk |k)∕(1 − rk |k), and the joint density for the system under attack can be easily derived

from the posterior density with k = {ak} by recalling that p1
k |k(ak, xk) = p({ak}, xk |k)∕rk |k, where

p
(
{ak}, xk |k) = rk |k−1 · p1

k |k−1(ak, xk) (34)

results from replacing (20), (21), and (31) in (29). Notice that, from the set integral definition (15) and densities
(33)-(34), it holds that ∫ p(∅, xk |k)dxk + ∫∫ p({ak}, xk |k)dakdxk = 1. Hence, as stated, the Bayes correction (22)
provides a hybrid Bernoulli density. Next, for the case k = {𝑦k}, (30) leads to

p({𝑦k} |k−1) = pd[(1 − p𝑓 )(Ψ1 − rk |k−1Ψ) + p𝑓𝜅(𝑦k)], (35)

so that, from (29), one gets

p
(
∅, xk |k) = [(1 − p𝑓 )𝓁(𝑦k |xk) + p𝑓𝜅(𝑦k)]

(1 − p𝑓 )(Ψ1 − rk |k−1Ψ) + p𝑓𝜅(𝑦k)
(1 − rk |k−1)p0

k |k−1(xk), (36)

which, in turn, is used to obtain (23) through (32). Once rk|k is known, (24) immediately follows as previously shown
for the case k = ∅, while (25) comes from dividing the posterior

p
(
{ak}, xk |k) = [(1 − p𝑓 )𝓁(𝑦k |xk) + p𝑓𝜅(𝑦k)]

(1 − p𝑓 )(Ψ1 − rk |k−1Ψ) + p𝑓𝜅(𝑦k)
rk |k−1 p1

k |k−1(ak, xk) (37)

by rk|k in (23).

3.1.2 Extra packet injection
A complete derivation of the correction step for the extra packet injection model introduced in Section 2.1 can be found
in the work of Forti et al.30 We summarize below the main results, since they are the basis for the derivation of the GM
filter of Section 4. First recall that, in this case, the measurement set k is given by the union of the two independent
random sets k and k. Clearly, in view of (5), k is a BRS whose cardinality is either 0 or 1 depending on whether the
system-originated measurement yk is delivered or not. Conversely, it is supposed that no prior knowledge on the number
of fake measurements, ie, the cardinality of k, is available. Accordingly, 𝜌(n) is taken as an uninformative distribution,
and hence, the FISST PDF of fake-only measurements turns out to be

𝛾(k) ∝ |k|! ∏
𝑦k∈k

𝜅(𝑦k), (38)

where 𝜅(yk) is a PDF describing the distribution of fake measurements on the measurement space 𝕐. Clearly, if no prior
knowledge on such a distribution can be assumed, the same approach of Section 2.1 can be followed by taking 𝜅(yk) as
an uninformative (ie, uniform) PDF over 𝕐. The following result holds.

Theorem 2 (Correction under extra packet injection attack, see the work of Forti et al30 for the proof). Suppose that
the prior density at time k is hybrid Bernoulli of the form

p
(k, xk |k−1) = {

(1 − rk |k−1)p0
k |k−1(xk), if k = ∅

rk |k−1 · p1
k |k−1(ak, xk), if k = {ak}.

(39)
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Then, given the measurement random set k defined in (4), also the posterior density at time k turns out to be hybrid
Bernoulli of the form

p(k, xk |k) =

{
(1 − rk |k)p0

k |k(xk), if k = ∅
rk |k · p1

k |k(ak, xk), if k = {ak},
(40)

completely specified by the triplet

rk |k =
1 − pd (1 − Γ1)

1 − pd[1 − (Γ0 − rk |k−1Γ)]
rk |k−1 (41)

p0
k |k(xk) =

1 − pd + pd
∑

𝑦k∈k

𝓁(𝑦k | xk)
n𝜅(𝑦k)

1 − pd (1 − Γ0)
p0

k |k−1(xk) (42)

p1
k |k(ak, xk) =

1 − pd + pd
∑

𝑦k∈k

𝓁(𝑦k |ak ,xk)
n𝜅(𝑦k)

1 − pd (1 − Γ1)
p1

k |k−1(ak, xk), (43)

where

Γ0
△
=

∑
𝑦k∈k

∫ 𝓁(𝑦k |xk)p0
k |k−1(xk)dxk

n𝜅(𝑦k)
(44)

Γ1
△
=

∑
𝑦k∈k

∫∫ 𝓁(𝑦k |ak, xk)p1
k |k−1(ak, xk)dakdxk

n𝜅(𝑦k)
(45)

and Γ
△
= Γ0 − Γ1.

3.2 Dynamic model and prediction
Let us now focus on the prediction step of the Bayesian HBF. Concerning the propagation of the signal attack from time
k to time k + 1, we consider the most general model for signal attacks where any value can be injected and, accordingly,
we model ak+1 as a completely unknown input whose value does not depend on the values ak and xk of attack and,
respectively, state at time k. However, concerning the existence of the attack at time k + 1, we introduce two parameters
ps and pb to model the fact that the presence of an attack at time k + 1 is more probable when an attack is already present
at time k: pb denotes the probability that an attack ak+1 is launched to the system at time k + 1 when the system is under
normal operation at time k; ps denotes the probability that an adversarial action affecting the system at time k will endure
to time k + 1. Notice that the probabilities pb and ps have to be regarded as design parameters for the filter that can be
tuned depending on the desired properties: the lower is pb, the more cautious will be the filter in declaring the presence
of an attack; the higher is ps, the more cautious will be the filter in declaring that the attack has disappeared. According
to this model, the transition density 𝜋(k+1 |k) of the attack BRS takes the form

𝜋(k+1 |∅) = {
1 − pb, if k+1 = ∅
pb p(ak+1), if k+1 = {ak+1}

𝜋(k+1 |{ak}) =

{
1 − ps, if k+1 = ∅
ps p(ak+1), if k+1 = {ak+1}.

Like in Section 2.2, p(ak+1) is the PDF summarizing the available knowledge on ak+1, which can be taken equal to an
uninformative PDF (eg, uniform over the attack space) when the attack vector is completely unknown.

Then, the joint transition density of (, x) at time k + 1 takes the form

𝜋(k+1, xk+1 |k, xk) = 𝜋(xk+1 |k, xk)𝜋(k+1 |k), (46)

where, in accordance with (1), we have

𝜋(xk+1 |k, xk) =

{
𝜋(xk+1 |xk), if k = ∅
𝜋(xk+1 |ak, xk), if k = {ak},

(47)
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with 𝜋(xk+1 | xk) and 𝜋(xk+1 | ak, xk) known Markov transition PDFs.
Under the above assumptions, an exact recursion for the prior density can be obtained.

Theorem 3 (See the work of Forti et al30 for the proof). Given the posterior hybrid Bernoulli density p(k, xk |k) at
time k of the form (22), fully characterized by the triplet (rk |k, p0

k |k(xk), p1
k |k(ak, xk)), also the predicted density turns out

to be hybrid Bernoulli of the form

p
(k+1, xk+1 |k) = {

(1 − rk+1 |k)p0
k+1 |k(xk+1), if k+1 = ∅

rk+1 |k · p1
k+1 |k(ak+1, xk+1), if k+1 = {ak+1},

(48)

with
rk+1 |k = (1 − rk |k)pb + rk |k ps (49)

p0
k+1 |k(xk+1) =

(1 − rk |k)(1 − pb)pk+1 |k(xk+1 |∅)
1 − rk+1 |k

+
rk |k(1 − ps)pk+1 |k(xk+1 |{ak})

1 − rk+1 |k
(50)

p1
k+1 |k(ak+1, xk+1) =

(1 − rk |k)pb pk+1 |k(xk+1 |∅)p(ak+1)
rk+1 |k

+
rk |k ps pk+1 |k(xk+1|{ak})p(ak+1)

rk+1 |k
, (51)

where
pk+1 |k(xk+1 |∅) = ∫ 𝜋(xk+1 |xk)p0

k |k(xk)dxk (52)

pk+1 |k(xk+1 |{ak}) = ∫∫ 𝜋(xk+1 |ak, xk)p1
k |k(ak, xk)dakdxk. (53)

Notice that, if pb = 0, ps = 1, and rk | k = 1, it follows that rk+1 | k = 1 and p1
k+1 |k(ak+1, xk+1) = pk+1 |k(xk+1 |{ak})p(ak+1).

Hence, in this case, we recover the standard Chapman-Kolmogorov Equation (9) for the system under attack.

Remark 1. Given the conditional density p(k, xk |k), characterized by the triplet (rk |k, p0
k |k(·), p1

k |k(·, ·)), the joint
attack detection and state estimation problem can be solved as follows. First of all, we perform attack detection using
rk|k from the available current hybrid Bernoulli density p(k, xk |k). By using a MAP decision rule, given k, the
detector will assign ̂k ≠ ∅ (the system is under attack) if and only if Prob(k ≠ ∅ |k) > Prob(k = ∅ |k), ie, if and
only if rk | k > 1∕2. Then, if the signal attack has been detected, one can maximize p(k, xk |k) with respect to xk and
ak. In this way, it is possible to obtain a MAP estimate of xk and an ML estimate of the unknown attack input ak. The
above joint attack detection and state estimation process is illustrated in Figure 3.

Remark 2. The Bayesian formulation of this section has allowed to generalize the standard joint input and state fil-
tering process to take into account several practically relevant issues like the switching nature of the attack input,
the injection of fake measurements or replacement of system-originated by fake measurements, and the possible lack
of system-originated measurements. Please notice that all such phenomena are not contemplated in the standard
filtering process.

Remark 3. The hybrid Bernoulli filtering recursions derived in this section are rarely solvable in explicit form but, as
it will be shown in the next section, this is possible in the linear Gaussian case. In such a case, in fact, the propagated
PDFs p0

k |k(·) and p1
k |k(·, ·) turn out to be GMs at any time k, even if with a number of Gaussian components growing

with time and hence to be reduced via suitable pruning and merging procedures.

Remark 4. It is clear from the previous derivations that the defense method against signal attacks is embedded in the
proposed HBF and can be coordinated with any of the defense methods against the two considered data attacks, either
packet substitution or extra packet injection. In fact, it suffices to perform the correction step of the HBF according
to either Theorem 1 or Theorem 2 while the prediction step is clearly unaffected by the choice of the data attack
model. Please notice that packet substitution and extra packet injection attacks are clearly alternative and that the
HBF can switch from counteracting one or the other at any time, just by choosing the appropriate correction step,
depending on whether the system monitor receives a single or multiple data packets during the sampling interval. The
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FIGURE 3 Block diagram of the joint attack detection and state
estimation process

above described strategy could, therefore, provide a sensible way to coordinate the defense methods against packet
substitution and extra packet injection cyberattacks.

4 BAYESIAN RANDOM SET FILTER FOR JOINT ATTACK DETECTION AND
STATE ESTIMATION: NO DIRECT FEEDTHROUGH CASE

Suppose now that, even when the attack input is present, there is no direct feedthrough from the attack ak to the output
yk, so that the measurement model is

𝑦k = h(xk) + vk, (54)

irrespectively of the presence of the attack. In this case, clearly, the attack set k must be estimated with one step delay,
since k+1 is the first measurement set containing information on k. In the following sections, a detailed derivation of
the correction and prediction steps of the Bayes recursion in the case of no direct feedthrough is provided.

4.1 Measurement models and correction
In the case of packet substitution with no direct feedthrough, the likelihood function 𝜆(k |xk) takes the following form:

𝜆(k |xk) =

{
1 − pd, if k = ∅
pd[(1 − p𝑓 )𝓁(𝑦k |xk) + p𝑓 𝜅(𝑦k)], if k = {𝑦k},

(55)

where 𝓁(yk | xk) is the standard likelihood function of the system-generated measurement yk. It is easy to check that the
likelihood function 𝜆(k |xk) integrates to one.

Instead, in the case of extra packet injection attack with no direct feedthrough, it can be shown that the likelihood
function 𝜆(k |xk) can be written as

𝜆(k |xk) = 𝛾(k)

[
1 − pd + pd

∑
𝑦k∈k

𝓁(𝑦k |xk)
n𝜅(𝑦k)

]
, (56)

where n denotes the cardinality of k, ie, the number of received measurements.
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Hence, the following result holds (the proof is omitted since it follows along the same lines as the proofs of
Theorems 1 and 2).

Theorem 4 (Correction without direct feedthrough). Suppose that the prior density at time k is hybrid Bernoulli of the
form

p
(k−1, xk |k−1) = {

(1 − rk |k−1)p0
k |k−1(xk), if k−1 = ∅

rk |k−1 · p1
k |k−1(ak−1, xk), if k−1 = {ak−1}.

(57)

Then, given the measurement random set k for packet substitution attack, also the posterior density at time k turns out
to be hybrid Bernoulli of the form

p
(k−1, xk |k) = {

(1 − rk |k)p0
k |k(xk), if k−1 = ∅

rk |k · p1
k |k(ak−1, xk), if k−1 = {ak−1}.

(58)

The triplet (rk |k, p0
k |k(xk), p1

k |k(ak−1, xk)) completely specifying the posterior density can be computed as in Theorem 1 for
the case of packet substitution and as in Theorem 2 for the case of extra packet injection attack, provided that ak, k, and
𝓁(yk | ak, xk) are replaced by ak−1, k−1, and 𝓁(yk | xk), respectively.

4.2 Dynamic model and prediction
The joint transition density takes the form

𝜋(k, xk+1 |k−1, xk) = 𝜋(xk+1 |k, xk)𝜋(k |k−1), (59)

where

𝜋(xk+1 |k, xk) =

{
𝜋(xk+1 |xk), if k = ∅
𝜋(xk+1 |ak, xk), if k = {ak},

(60)

with 𝜋(xk+1 | xk) and 𝜋(xk+1 | ak, xk) known Markov transition PDFs.
The transition density 𝜋(k |k−1) of the attack BRS takes the form

𝜋(k |∅) = {
1 − pb, if k = ∅
pb p(ak), if k = {ak}

𝜋(k|{ak−1}) =

{
1 − ps, if k = ∅
ps p(ak), if k = {ak},

where p(ak) is the PDF summarizing the available knowledge on ak, which can be taken equal to an uninformative PDF
(eg, uniform over the attack space) when the attack vector is completely unknown.

Theorem 5 (Prediction without direct feedthrough). Given the posterior hybrid Bernoulli density p(k−1, xk |k) at
time k of the form (58), fully characterized by the triplet (rk |k, p0

k |k(xk), p1
k |k(ak−1, xk)), also the predicted density turns out

to be hybrid Bernoulli of the form

p
(k, xk+1 |k) = {

(1 − rk+1 |k)p0
k+1 |k(xk+1), if k = ∅

rk+1 |k · p1
k+1 |k(ak, xk+1), if k = {ak},

(61)

with
rk+1 |k = (1 − rk |k)pb + rk |k ps (62)

p0
k+1 |k(xk+1) =

(1 − rk |k)(1 − pb)pk+1 |k(xk+1 |∅)
1 − rk+1 |k

+
rk |k(1 − ps)pk+1 |k(xk+1|{ak−1})

1 − rk+1 |k
(63)

p1
k+1 |k(ak, xk+1) =

(1 − rk |k)pb pk+1 |k(xk+1|{ak}, ∅)p(ak)
rk+1 |k

+
rk |k ps pk+1 |k(xk+1|{ak}, {ak−1})p(ak)

rk+1 |k
, (64)
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where
pk+1 |k(xk+1 |∅)△= ∫ 𝜋(xk+1 |xk)p0

k |k(xk)dxk (65)

pk+1 |k(xk+1|{ak−1})
△
= ∫∫ 𝜋(xk+1 |xk)p1

k |k(ak−1, xk)dak−1dxk (66)

pk+1 |k(xk+1|{ak}, ∅)
△
= ∫ 𝜋(xk+1 |ak, xk)p0

k |k(xk)dxk (67)

pk+1 |k(xk+1|{ak}, {ak−1})
△
= ∫∫ 𝜋(xk+1 |ak, xk)p1

k |k(ak−1, xk)dak−1dxk. (68)

Proof. The prediction equation is given by the following generalization of (12):

p
(k, xk+1 |k) = ∫∫ 𝜋(k, xk+1 |k−1, xk)p

(k−1, xk |k) 𝛿k−1dxk

= (1 − rk |k)∫ 𝜋(k, xk+1 |∅, xk)p0
k |k(xk)dxk + rk |k ∫∫ 𝜋(k, xk+1|{ak−1}, xk)p1

k |k(ak−1, xk)dak−1dxk.

Then, for k = ∅, one has

p
(
∅, xk+1 |k) = (1 − rk |k)(1 − pb)∫ 𝜋(xk+1 |xk)p0

k |k(xk)dxk + rk |k(1 − ps)∫∫ 𝜋(xk+1 |xk)p1
k |k(ak−1, xk)dak−1dxk

p
(
∅, xk+1 |k) = (1 − rk |k) (1 − pb)pk+1 |k(xk+1 |∅) + rk |k (1 − ps)pk+1 |k(xk+1|{ak−1}).

Analogously, for k = {ak}, we obtain

p({ak}, xk+1 |k) = [(1 − rk |k)pb pk+1 |k(xk+1|{ak}, ∅) + rk |k ps pk+1 |k(xk+1|{ak}, {ak−1})]p(ak).

Thus, the output of the prediction step is of the form (61), fully specified by (62)-(64).

5 GAUSSIAN MIXTURE HYBRID BERNOULLI FILTER

While, in general, no exact closed-form solution to the proposed HBF is admitted, for the special class of linear Gaussian
models, this problem can be effectively mitigated by parameterizing the posterior densities p0

k |k(·) and p1
k |k(·, ·) via GMs so

as to derive a GM-HBF. This approach can be generalized to nonlinear models and/or non-Gaussian noises via nonlinear
extensions of the GM approximation based on nonlinear filtering techniques such as the extended Kalman filter (EKF)
or the unscented Kalman filter (UKF). In what follows, a detailed derivation of the GM-HBF for linear Gaussian models
is provided. For the sake of brevity, only the direct feedthrough case (Section 3) is considered. The GM implementation
in the case of no direct feedthrough (Section 4) can be derived in a similar way.

Denoting by  (x;m,P) a Gaussian PDF in the variable x, with mean m and covariance P, the closed-form GM-HBF
assumes linear Gaussian observation, transition, and (a priori) attack models, ie,

𝓁(𝑦k |xk) =  (𝑦k;Cxk,R) (69)

𝓁(𝑦k |ak, xk) =  (𝑦k;Cxk + Hak,R) (70)

𝜋(xk+1 |xk) =  (xk+1;Axk,Q) (71)

𝜋(xk+1 |ak, xk) =  (xk+1;Axk + Gak,Q) (72)

p(a) =
Ja∑
𝑗=1

𝜔̃a,𝑗 (a; ã𝑗 , P̃a,𝑗). (73)
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Note that (73) uses given model parameters Ja, 𝜔̃a,𝑗 , ã𝑗 , P̃a,𝑗 , 𝑗 = 1, … , Ja, to define the a priori PDF of the signal attack,
here expressed as a GM and supposed time independent.

In the GM implementation, each probability density at time k is represented by the following set of parameters:

(
rk |k, p0

k |k(xk), p1
k |k(ak, xk)

)
=
(

rk |k,
{
𝜔

0,𝑗
k |k,m0,𝑗

k |k,P0,𝑗
k |k

}J0
k | k

𝑗=1
,
{
𝜔

1,𝑗
k |k,m1,𝑗

k |k,P1,𝑗
k |k

}J1
k | k

𝑗=1

)
, (74)

where 𝜔 and J indicate, respectively, weights and number of mixture components, such that

p0
k |k(xk) =

J0
k | k∑
𝑗=1

𝜔
0,𝑗
k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
(75)

p1
k |k(ak, xk) =

J1
k | k∑
𝑗=1

𝜔
1,𝑗
k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
, (76)

with m0
k |k = x̂0

k |k, m1
k |k = [x̂1T

k |k, âT
k ]

T , P0
k |k

△
= 𝔼[(xk − x̂0

k |k)(xk − x̂0
k |k)

T], P1
k |k =

[
P1x

k |k Pxa
k

Pax
k Pa

k

]
, and P1x

k |k
△
= 𝔼[(xk −

x̂1
k |k)(xk − x̂1

k |k)
T], (Pxa

k )T = Pax
k

△
= 𝔼[(ak − âk)(xk − x̂1

k |k)
T], Pa

k
△
= 𝔼[(ak − âk)(ak − âk)T]. The weights are such that∑J0

k | k
𝑗=1 𝜔

0,𝑗
k |k = 1 and

∑J1
k | k
𝑗=1 𝜔

1,𝑗
k |k = 1.

The GM implementation of the HBF (GM-HBF) is described as follows.

5.1 GM-HBF correction for packet substitution
Proposition 1. Suppose that assumptions (69)-(73) hold, the measurement set k is defined by (3), the predicted FISST
density at time k is fully specified by the triplet (rk |k−1, p0

k |k−1(xk), p1
k |k−1(ak, xk)), and p0

k |k−1(·), p1
k |k−1(·, ·) are GMs of the

form

p0
k |k−1(xk) =

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
k |k−1

(
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
(77)

p1
k |k−1(ak, xk) =

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
k |k−1

(
m1,𝑗

k |k−1,P1,𝑗
k |k−1

)
. (78)

Then, the posterior FISST density (rk |k, p0
k |k(xk), p1

k |k(ak, xk)) is given by

rk |k =
(1 − p𝑓 )Ψ1 + p𝑓𝜅(𝑦k)

(1 − p𝑓 )(Ψ0 − rk |k−1Ψ) + p𝑓𝜅(𝑦k)
rk |k−1 (79)

p0
k |k(xk) =

J0
k | k∑
𝑗=1

𝜔
0,𝑗
k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
=

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
F,k |k

(
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
+

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
F̄,k |k

 (
m0,𝑗

k |k,P0,𝑗
k |k

)
(80)

p1
k |k(ak, xk) =

J1
k | k∑
𝑗=1

𝜔
1,𝑗
k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
=

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
F,k |k

(
m1,𝑗

k |k−1,P1,𝑗
k |k−1

)
+

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
F̄,k |k

 (
m1,𝑗

k |k,P1,𝑗
k |k

)
, (81)

where

𝜔
i,𝑗
F,k |k =

p𝑓 𝜅(𝑦k)𝜔i,𝑗
k |k−1

(1 − p𝑓 )Ψi + p𝑓𝜅(𝑦k)
, (82)

𝜔
i,𝑗
F̄,k |k

=
(1 − p𝑓 )𝜔i,𝑗

k |k−1

(1 − p𝑓 )Ψi + p𝑓 𝜅(𝑦k)
qi,𝑗

k (𝑦k), (83)

for i = 0, 1, while
q0,𝑗

k (𝑦k) =  (
𝑦;Cm0,𝑗

k |k−1,CP0,𝑗
k |k−1CT + R

)
(84)
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q1,𝑗
k (𝑦k) =  (

𝑦; C̃m1,𝑗
k |k−1, C̃P1,𝑗

k |k−1C̃T + R
)
, (85)

with C̃
△
=[C,H], Ψ0 =

∑J0
k | k−1
𝑗=1 𝜔

0,𝑗
k |k−1q0,𝑗

k (𝑦k), and Ψ1 =
∑J1

k | k−1
𝑗=1 𝜔

1,𝑗
k |k−1q1,𝑗

k (𝑦k).

Proof. From Theorem 1, the corrected probability of signal attack existence is provided by (23) where Ψ0 is obtained
by substituting (69) and (77) into (26), so that

Ψ0 = ∫  (𝑦;Cxk,R)
J0

k | k−1∑
𝑗=1

𝜔
0,𝑗
k |k−1

(
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
dxk. (86)

Then, by applying a standard result for Gaussian functions,31, Lemma 1 we can write

∫  (𝑦;Cxk,R) (
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
dxk = q0,𝑗

k (𝑦k), (87)

where q0,𝑗
k (𝑦k) is given by (84), and hence, (86) takes the form

Ψ0 =
J0

k | k−1∑
𝑗=1

𝜔
0,𝑗
k |k−1q0,𝑗

k (𝑦k). (88)

Moreover, Ψ1 in (79) can be analogously obtained by substituting (70) and (78) into (27), and by applying lemma 1 in
the work of Vo and Ma31 to the (double) integral ∫∫  (𝑦;Cxk + Hak,R) (m1,𝑗

k |k−1,P1,𝑗
k |k−1)dakdxk, so as to obtain

Ψ1 =
J1

k | k−1∑
𝑗=1

𝜔
1,𝑗
k |k−1q1,𝑗

k (𝑦k), (89)

where q1,j(yk) is given by (85) and m1,𝑗
k |k−1 = [(x̂1

k |k−1)
T , (â𝑗

k)
T]T .

Next, the posterior density p0
k |k(·) can be derived from (24) in Theorem 1 as

p0
k |k(xk) =

p𝑓 𝜅(𝑦k)
(1 − p𝑓 )Ψ0 + p𝑓 𝜅(𝑦k)

p0
k |k−1(xk) +

(1 − p𝑓 )𝓁(𝑦k |xk)
(1 − p𝑓 )Ψ0 + p𝑓 𝜅(𝑦k)

p0
k |k−1(xk). (90)

By substituting (69) and (77) into (90), we obtain

p0
k |k(xk) =

J0
k | k−1∑
𝑗=1

p𝑓 𝜅(𝑦k)𝜔0,𝑗
k |k−1

(1 − p𝑓 )Ψ0 + p𝑓 𝜅(𝑦k)
 (

m0,𝑗
k |k−1,P0,𝑗

k |k−1

)
+

J0
k | k−1∑
𝑗=1

(1 − p𝑓 )𝜔0,𝑗
k |k−1 (𝑦;Cxk,R)

(1 − p𝑓 )Ψ0 + p𝑓 𝜅(𝑦k)
 (

m0,𝑗
k |k−1,P0,𝑗

k |k−1

)
. (91)

Then, by applying lemma 2 in the work of Vo and Ma,31 we can write

 (𝑦;Cxk,R) (
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
= q0,𝑗

k (𝑦k)
(

m0,𝑗
k |k,P0,𝑗

k |k

)
, (92)

where q0,𝑗
k (𝑦k) has been defined in (84), while m0,𝑗

k |k,P0,𝑗
k |k have been introduced in (75).

In the special case of linear Gaussian models, m0,𝑗
k |k and P0,𝑗

k |k can be easily calculated following the standard Bayes fil-
ter correction step, which, in this case, boils down to the standard Kalman filter (KF) for linear discrete-time systems28:

m0,𝑗
k |k = m0,𝑗

k |k−1 + L0,𝑗
k

(
𝑦k − Cm0,𝑗

k |k−1

)
(93)

P0,𝑗
k |k =

(
I − L0,𝑗

k C
)

P0,𝑗
k |k−1, (94)
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where
L0,𝑗

k = P0,𝑗
k |k−1CT(S0,𝑗

k

)−1 (95)

S0,𝑗
k = CP0,𝑗

k |k−1CT + R. (96)
Thus, by substituting (92) into (91) with means and covariances given by (93)-(94), we can write

p0
k |k(xk) =

J0
k | k∑
𝑗=1

𝜔
0,𝑗
k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
, (97)

which consists of 2J0
k |k−1 Gaussian components, ie,

p0
k |k(xk) =

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
F,k |k

(
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
+

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
F̄,k |k

 (
m0,𝑗

k |k,P0,𝑗
k |k

)
, (98)

with weights 𝜔
0,𝑗
F,k |k, 𝜔

0,𝑗
F̄,k |k

given by (82)-(83) for i = 0. Note that, as it can be seen from (98), it turns out that
J0

k |k = 2J0
k |k−1, where the first legacy (not corrected) components correspond to the hypothesis of the system-originated

measurement being replaced by a fake one 𝑦
𝑓

k , while the remaining components are the ones corrected under the
hypothesis of receiving yk with probability 1 − pf.

Following the same rationale, analogous results can be obtained for p1
k |k(·, ·), with the exception that also signal

attack estimation has to be performed. By substituting (70) and (78) into (25) in Theorem 1, we obtain

p1
k |k(ak, xk) =

J1
k | k−1∑
𝑗=1

p𝑓 𝜅(𝑦k)𝜔1,𝑗
k |k−1

(1 − p𝑓 )Ψ1 + p𝑓 𝜅(𝑦k)
 (

m1,𝑗
k |k−1,P1,𝑗

k |k−1

)

+
J1

k | k−1∑
𝑗=1

(1 − p𝑓 )𝜔1,𝑗
k |k−1 (𝑦;Cxk + Hak,R)

(1 − p𝑓 )Ψ1 + p𝑓 𝜅(𝑦k)
 (

m1,𝑗
k |k−1,P1,𝑗

k |k−1

)
.

(99)

Then, by applying lemma 2 in the work of Vo and Ma,31 we can write

 (𝑦;Cxk + Hak,R) (
m1,𝑗

k |k−1,P1,𝑗
k |k−1

)
= q1,𝑗

k (𝑦k)
(

m1,𝑗
k |k,P1,𝑗

k |k

)
, (100)

where q1,𝑗
k (𝑦k) has been defined in (85), while m1,𝑗

k |k,P1,𝑗
k |k have been introduced in (76). For linear Gaussian models,

m1,𝑗
k |k and P1,𝑗

k |k can be calculated following the correction step of the filter for JISE of linear discrete-time systems,28

introduced in Section 2.2. In particular, m1,𝑗
k |k consists of

x̂1,𝑗
k |k = x̂1,𝑗

k |k−1 + L̃1,𝑗
k

(
𝑦k − Cx̂1,𝑗

k |k−1 − Hâ𝑗

k

)
= x̂1,𝑗

k |k−1 + L1,𝑗
k

(
𝑦k − Cx̂1,𝑗

k |k−1

)
(101)

â𝑗

k = M𝑗

k

(
𝑦k − Cx̂1,𝑗

k |k−1

)
, (102)

where
L1,𝑗

k = L̃1,𝑗
k

(
I − HM𝑗

k

)
(103)

L̃1,𝑗
k = P1x,𝑗

k |k−1CT(S1,𝑗
k

)−1 (104)

S1,𝑗
k = CP1x,𝑗

k |k−1CT + R (105)

M𝑗

k =
[

HT(S1,𝑗
k

)−1H
]−1

HT(S1,𝑗
k

)−1
. (106)

The elements composing P1,𝑗
k |k can be computed as

P1x,𝑗
k |k =

(
I − L1,𝑗

k C
)

P1x,𝑗
k |k−1 (107)
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Pa,𝑗
k =

[
HT(S1,𝑗

k

)−1H
]−1

(108)

Pxa,𝑗
k =

(
Pax,𝑗

k

)T = −L̃1,𝑗
k HPa,𝑗

k . (109)

Thus, by substituting (100) into (99) with means and covariances given by (101)-(102) and (107)-(109), we can write

p1
k |k(ak, xk) =

J1
k | k∑
𝑗=1

𝜔
1,𝑗
k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
, (110)

which comprises 2J1
k |k−1 components, ie,

p1
k |k(ak, xk) =

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
F,k |k

(
m1,𝑗

k |k−1,P1,𝑗
k |k−1

)
+

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
F̄,k |k

 (
m1,𝑗

k |k,P1,𝑗
k |k

)
, (111)

with weights 𝜔1,𝑗
F,k |k, 𝜔

1,𝑗
F̄,k |k

given by (82)-(83) for i = 1.

5.2 GM-HBF correction for extra packet injection
Proposition 2. Suppose that assumptions (69)-(73) hold, the measurement set k is defined by (4), the predicted FISST
density at time k is fully specified by the triplet (rk |k−1, p0

k |k−1(xk), p1
k |k−1(ak, xk)), and p0

k |k−1(·), p1
k |k−1(·, ·) are GMs of the

form (77) and (78), respectively. Then, the posterior FISST density (rk |k, p0
k |k(xk), p1

k |k(ak, xk)) is given by

rk |k =
1 − pd + pdΓ1

1 − pd + pd(1 − rk |k−1)Γ0 + pd rk |k−1Γ1
rk |k−1 (112)

p0
k |k(xk) =

J0
k | k∑
𝑗=1

𝜔
0,𝑗
k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
=

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
D̄,k |k

 (
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
+

∑
𝑦k∈k

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
D,k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
(113)

p1
k |k(ak, xk) =

J1
k | k∑
𝑗=1

𝜔
1,𝑗
k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
=

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
D̄,k |k

 (
m1,𝑗

k |k−1,P1,𝑗
k |k−1

)
+

∑
𝑦k∈k

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
D,k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
, (114)

where, for i = 0, 1,

𝜔
i,𝑗
D̄,k |k

=
(1 − pd)𝜔i,𝑗

k |k−1

1 − pd + pdΓi
, (115)

𝜔
i,𝑗
D,k |k =

pd𝜔
i,𝑗
k |k−1qi,𝑗

k (𝑦k)

(1 − pd + pdΓi)n𝜅(𝑦k)
(116)

and

Γ0 =
∑
𝑦k∈k

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
k |k−1

n𝜅(𝑦k)
q0,𝑗

k (𝑦k) (117)

Γ1 =
∑
𝑦k∈k

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
k |k−1

n𝜅(𝑦k)
q1,𝑗

k (𝑦k). (118)

Proof. We first derive the corrected probability of signal attack existence, which can be directly written from (41) as

rk |k =
1 − pd + pdΓ1

1 − pd + pd(1 − rk |k−1)Γ0 + pd rk |k−1Γ1
rk |k−1, (119)
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where Γ0 is obtained by substituting (69) and (77) into (44), so that

Γ0 =
∑
𝑦k∈k

∫  (𝑦;Cxk,R)
J0

k | k−1∑
𝑗=1

𝜔
0,𝑗
k |k−1

(
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
dxk

n𝜅(𝑦k)
. (120)

Then, by applying (87), (120) takes the form (117). Moreover, Γ1 in (119) can be analogously obtained by substituting
(70) and (78) into (45) and by applying (100) that leads to (118).

Next, the posterior density p0
k |k(·) can be derived from (42) in Theorem 2 as

p0
k |k(xk) =

1 − pd

1 − pd + pdΓ0
p0

k |k−1(xk) +
pd

1 − pd + pdΓ0

∑
𝑦k∈k

𝓁(𝑦k |xk)
n𝜅(𝑦k)

p0
k |k−1(xk). (121)

By substituting (69) and (77) into (121), we obtain

p0
k |k(xk) =

J0
k | k−1∑
𝑗=1

1 − pd

1 − pd + pdΓ0
𝜔

0,𝑗
k |k−1

(
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)

+
∑
𝑦k∈k

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
k |k−1

pd

1 − pd + pdΓ0

 (𝑦;Cxk,R)
n𝜅(𝑦k)

 (
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
.

(122)

Thus, by substituting (87) into (122), with means and covariances given by (93)-(94), we can write

p0
k |k(xk) =

J0
k | k∑
𝑗=1

𝜔
0,𝑗
k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
, (123)

which comprises J0
k |k−1(1 + |k|) components, where |k| denotes the cardinality of the measurement set  at time

k, ie,

p0
k |k(xk) =

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
D̄,k |k

 (
m0,𝑗

k |k−1,P0,𝑗
k |k−1

)
+

∑
𝑦k∈k

J0
k | k−1∑
𝑗=1

𝜔
0,𝑗
D,k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
, (124)

with weights

𝜔
0,𝑗
D̄,k |k

=
(1 − pd)𝜔0,𝑗

k |k−1

1 − pd + pd
∑

𝑦k∈k

J0
k | k−1∑
h=1

𝜔0,h
k | k−1

n𝜅(𝑦k)
q0,h

k (𝑦k)

𝜔
0,𝑗
D,k |k =

pd𝜔
0,𝑗
k |k−1q0,𝑗

k (𝑦k)⎡⎢⎢⎣1 − pd + pd
∑

𝑦k∈k

J0
k | k−1∑
h=1

𝜔0,h
k | k−1

n𝜅(𝑦k)
q0,h

k (𝑦k)
⎤⎥⎥⎦ n𝜅(𝑦k)

.

Note that, as it can be seen from (124), it turns out that J0
k |k = J0

k |k−1 + |k|J0
k |k−1 = J0

k |k−1(1 + |k|), where the first
legacy components correspond to the fact that no measurement has been delivered, and hence, no update is carried
out, while the remaining components are the ones corrected when one or multiple measurements are received.
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Following the same rationale, analogous results can be obtained for p1
k |k(·, ·). From (43) in Theorem 2,

p1
k |k(ak, xk) =

1 − pd

1 − pd + pdΓ1
p1

k |k−1(ak, xk) +
pd

1 − pd + pdΓ1

∑
𝑦k∈k

𝓁(𝑦k |ak, xk)
n𝜅(𝑦k)

p1
k |k−1(ak, xk). (125)

By substituting (70) and (78) into (125), we obtain

p1
k |k(ak, xk) =

J1
k | k−1∑
𝑗=1

1 − pd

1 − pd + pdΓ1
𝜔

1,𝑗
k |k−1

(
m1,𝑗

k |k−1,P1,𝑗
k |k−1

)

+
∑
𝑦k∈k

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
k |k−1

pd

1 − pd + pdΓ1

 (𝑦;Cxk + Hak,R)
n𝜅(𝑦k)

 (
m1,𝑗

k |k−1,P1,𝑗
k |k−1

)
.

(126)

Thus, by substituting (100) into (126), with means and covariances given by (101)-(102) and (107)-(109), we can write

p1
k |k(ak, xk) =

J1
k | k∑
𝑗=1

𝜔
1,𝑗
k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
, (127)

which comprises J1
k |k−1(1 + |k|) components, ie,

p1
k |k(ak, xk) =

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
D̄,k |k

 (
m1,𝑗

k |k−1,P1,𝑗
k |k−1

)
+

∑
𝑦k∈k

J1
k | k−1∑
𝑗=1

𝜔
1,𝑗
D,k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
, (128)

with weights

𝜔
1,𝑗
D̄,k |k

=
(1 − pd)𝜔1,𝑗

k |k−1

1 − pd + pd
∑

𝑦k∈k

J1
k | k−1∑
h=1

𝜔1,h
k | k−1

n𝜅(𝑦k)
q1,h

k (𝑦k)

𝜔
1,𝑗
D,k |k =

pd𝜔
1,𝑗
k |k−1q1,𝑗

k (𝑦k)⎡⎢⎢⎣1 − pd + pd
∑

𝑦k∈k

J1
k | k−1∑
h=1

𝜔1,h
k | k−1

n𝜅(𝑦k)
q1,h

k (𝑦k)
⎤⎥⎥⎦ n𝜅(𝑦k)

.

5.3 GM-HBF prediction
Proposition 3. Suppose that assumptions (69)-(73) hold, the posterior FISST density at time k is fully specified by the
triplet (rk |k, p0

k |k(xk), p1
k |k(ak, xk)), and p0

k |k(·), p1
k |k(·, ·) are GMs of the form (75)-(76). Then, the predicted FISST density

(rk+1 |k, p0
k+1 |k(xk+1), p1

k+1 |k(ak+1, xk+1)) is given by

rk+1 |k = (1 − rk |k)pb + rk |k ps (129)

p0
k+1 |k(xk+1) =

J0
k+1 | k∑
𝑗=1

𝜔
0,𝑗
k+1 |k

(
m0,𝑗

k+1 |k,P0,𝑗
k+1 |k

)
(130)

p1
k+1 |k(ak+1, xk+1) =

J1
k+1 | k∑
𝑗=1

𝜔
1,𝑗
k+1 |k

(
m1,𝑗

k+1 |k,P1,𝑗
k+1 |k

)
, (131)
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where (130) comprises J0
k+1 |k = J0

k |k + J1
k |k components, ie,

p0
k+1 |k(xk+1) =

J0
k | k∑
𝑗=1

𝜔
0,𝑗
B̄,k+1 |k

 (
m0,𝑗

B̄,k+1 |k
,P0,𝑗

B̄,k+1 |k

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

no attack-birth

+
J1

k | k∑
𝑗=1

𝜔
0,𝑗
S̄,k+1 |k

 (
m0,𝑗

S̄,k+1 |k
,P0,𝑗

S̄,k+1 |k

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

,

no attack-survival

(132)

with
m0,𝑗

B̄,k+1 |k
= Am0,𝑗

k |k (133)

P0,𝑗
B̄,k+1 |k

= AP0,𝑗
k |kAT + Q (134)

𝜔
0,𝑗
B̄,k+1 |k

=
(1 − rk |k)(1 − pb)

1 − rk+1 |k
𝜔

0,𝑗
k |k (135)

and
m0,𝑗

S̄,k+1 |k
= Ãm1,𝑗

k |k (136)

P0,𝑗
S̄,k+1 |k

= ÃP1,𝑗
k |kÃT + Q (137)

𝜔
0,𝑗
S̄,k+1 |k

=
rk |k (1 − ps)
1 − rk+1 |k

𝜔
1,𝑗
k |k, (138)

where Ã
△
=[A,G]. Moreover, (131) comprises J1

k+1 |k = Ja(J0
k |k + J1

k |k) components, ie,

p1
k+1 |k(ak+1, xk+1) =

J0
k | k∑
𝑗=1

Ja∑
h=1

𝜔
1,𝑗h
B,k+1 |k

(
m1,𝑗h

B,k+1 |k,P1,𝑗h
B,k+1 |k

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

attack-birth

+
J1

k | k∑
𝑗=1

Ja∑
h=1

𝜔
1,𝑗h
S,k+1 |k

(
m1,𝑗h

S,k+1 |k,P1,𝑗h
S,k+1 |k

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

attack-survival

, (139)

where

m1,𝑗h
B,k+1 |k =

[
Am0,𝑗

k |k
ãh

]
(140)

P1,𝑗h
B,k+1 |k =

[
AP0,𝑗

k |kAT + Q 0
0 P̃a,h

]
(141)

𝜔
1,𝑗h
B,k+1 |k =

(1 − rk |k)pb

rk+1 |k
𝜔

0,𝑗
k |k 𝜔̃

a,h (142)

and

m1,𝑗h
S,k+1 |k =

[
Ãm1,𝑗

k |k
ãh

]
(143)

P1,𝑗h
S,k+1 |k =

[
ÃP1,𝑗

k |kÃT + Q 0
0 P̃a,h

]
(144)

𝜔
1,𝑗h
S,k+1 |k =

rk |k ps

rk+1 |k
𝜔

1,𝑗
k |k 𝜔̃

a,h. (145)

Proof. The predicted signal attack probability comes directly from (49). Let us now derive the predicted density
p0

k+1 |k(·). From (50) in Theorem 3,

p0
k+1 |k(xk+1) =

(1 − rk |k) (1 − pb)
1 − rk+1 |k ∫ 𝜋(xk+1 |xk), p0

k |k(xk)dxk +
rk |k (1 − ps)
1 − rk+1 |k ∫∫ 𝜋(xk+1 |ak, xk), p1

k |k(ak, xk)dakdxk. (146)
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Using (71), (75) in the first term and (72), (76) in the second term, we can rewrite

p0
k+1 |k(xk+1) =

(1 − rk |k) (1 − pb)
1 − rk+1 |k ∫  (x;Axk,Q)

J0
k | k∑
𝑗=1

𝜔
0,𝑗
k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
dxk

+
rk |k (1 − ps)
1 − rk+1 |k ∫∫  (x;Axk + Gak,Q)

J1
k | k∑
𝑗=1

𝜔
1,𝑗
k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
dakdxk.

(147)

Hence, using lemma 1 in the work of Vo and Ma31 in both the above terms, we finally derive (132)

p0
k+1 |k(xk+1) =

J0
k | k∑
𝑗=1

(1 − rk |k) (1 − pb)
1 − rk+1 |k

𝜔
0,𝑗
k |k

(
x;Am0,𝑗

k |k,AP0,𝑗
k |kAT + Q

)

+
J1

k | k∑
𝑗=1

rk |k (1 − ps)
1 − rk+1 |k

𝜔
1,𝑗
k |k

(
x; Ãm1,𝑗

k |k, ÃP1,𝑗
k |kÃT + Q

)
.

In a similar fashion, we can obtain p1
k+1 |k(·, ·). From (51) in Theorem 3,

p1
k+1 |k(ak+1, xk+1) =

(1 − rk |k)pb

rk+1 |k ∫ 𝜋(xk+1 |xk), p0
k |k(xk)dxk p(a) +

rk |k ps

rk+1 |k ∫∫ 𝜋(xk+1 |ak, xk)p1
k |k(ak, xk)dakdxk p(a),

which, using (71), (72), (73), (75), and (76), leads to

p1
k+1 |k(ak+1, xk+1) =

(1 − rk |k)pb

rk+1 |k ∫  (x;Axk,Q)
J0

k | k∑
𝑗=1

𝜔
0,𝑗
k |k

(
m0,𝑗

k |k,P0,𝑗
k |k

)
dxk

Ja∑
h=1

𝜔̃a,h (a; ãh, P̃a,h)

+
rk |k ps

rk+1 |k ∫∫  (x;Axk + Gak,Q)
J1

k | k∑
𝑗=1

𝜔
1,𝑗
k |k

(
m1,𝑗

k |k,P1,𝑗
k |k

)
dakdxk

Ja∑
h=1

𝜔̃a,h (a; ãh, P̃a,h).

(148)

Finally, by applying the same result on integrals of Gaussians used above, we have

p1
k+1 |k(ak+1, xk+1) =

J0
k | k∑
𝑗=1

Ja∑
h=1

(1 − rk |k)pb

rk+1 |k
𝜔

0,𝑗
k |k 𝜔̃

a,h (
x;Am0,𝑗

k |k,AP0,𝑗
k |kAT + Q

)  (a; ãh, P̃a,h)

+
J1

k | k∑
𝑗=1

Ja∑
h=1

rk |k ps

rk+1 |k
𝜔

1,𝑗
k |k 𝜔̃

a,h (
x; Ãm1,𝑗

k |k, ÃP1,𝑗
k |kÃT + Q

)  (a; ãh, P̃a,h),

(149)

from which (139) is obtained.

It is worth pointing out that, likewise other GM filters, also the proposed GM-HBF is characterized by a number of
Gaussian components that increases with no bound over time. As already noticed in the above derivation, at time k, the
GM-HBF requires

J0
k |k =

{
2J0

k |k−1, packet substitution
J0

k |k−1(1 + |k|), extra packet injection
, J1

k |k =

{
2J1

k |k−1, packet substitution
J1

k |k−1(1 + |k|), extra packet injection
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components to exactly represent the posterior densities p0
k |k(·) and p1

k |k(·, ·), respectively. Here,

J0
k |k−1 = J0

k−1 |k−1 + J1
k−1 |k−1,

J1
k |k−1 = Ja

(
J0

k−1 |k−1 + J1
k−1 |k−1

)
denote the number of components generated in the prediction step. Heuristic pruning and merging procedures31 can be
performed at each time step so as to remove low-weight components and combine statistically close components and,
hence, ensure that the total number of GM components is always less than a pre-specified maximum value, say, Jmax. In
this way, each step of the HBF has a bounded complexity in the order of Jmax KFs (or EKFs/UKFs in the nonlinear case).

Remark 5. The GM implementation of this section has actually revealed a connection between the proposed HBF
and the KF in that the former uses multiple KFs (or EKFs/UKFs) to propagate in time means and covariances of
the various components of the GM (see Equations (93)-(96), (101)-(109), (133)-(134) and (136)-(137)). It is also worth
to point out that, due to the switching nature of the attack input and the presence of fake measurements, the HBF
turns out to be nonlinear even if the CPS (1)-(2) is linear and Gaussian. However, the handling of nonlinearities in
the state-space model is actually a minor issue in this Bayesian setting, only requiring to replace the KFs (adopted for
propagating means and covariances of the Gaussian components of the conditional PDFs) with either EKF or UKF
that can cope with nonlinear functions 𝑓 0

k (·), 𝑓
1
k (·, ·), h0

k(·), 𝑓
1
k (·, ·) in (1)-(2).

6 NUMERICAL EXAMPLES

The effectiveness of the developed tools, based on Bayesian random set theory, for joint attack detection and secure state
estimation of CPSs has been tested on two numerical examples concerning a benchmark linear dynamical system and
a standard IEEE power network case study. Simulations have been carried out in the presence of both signal and extra
packet injection attacks as well as uncertainty on measurement delivery. Results on the performance of the GM-HBF
under packet substitution attack are shown in Section 5.2.

6.1 Benchmark linear system
Let us first consider the following benchmark linear system, already used in the JISE literature32:

xk+1 = Axk + Gak + wk

𝑦k = Cxk + Hak + vk,
(150)

where A, C, R, and Q are the same as in the work of Yong et al,25 while G = [e1, e2] and H = [e3, e1], where e1, … , e5 denote
the canonical basis vectors. For this numerical study, the probabilities of attack-birth and attack-survival are fixed, respec-
tively, at pb = 0.2 and ps = 0.8. The system-generated measurement is supposed to be delivered at the monitor/control
center with probability pd = 0.98, while the initial signal attack probability is set to r1 | 0 = 0.1. The initial state has been
set equal to x0 = 0, whereas both densities p0(·) and p1(·, ·) have been initialized as single Gaussian components with first
guess mean x̂0

1 |0 = [10, 10, 0, 0, 0]T and covariance P0
1 |0 = 104 I5. Moreover, the first estimate of the attack vector has been

randomly initialized as â1 |0 = [15.1, 25.53]T , with associated initial covariance matrix Pa
1 |0 = 50I2. The extra fake mea-

surements are modeled as uniformly distributed over the interval [−0.3, 140.3]. Finally, a pruning threshold 𝛾p = 10−3 and
a merging threshold 𝛾m = 3 have been chosen. As shown in Figure 4, at time k = 150, a signal attack vector a = [10, 20]T

is injected into the system, persisting for 200 time steps. The proposed GM-HBF promptly detects the unknown signal
attack, by simply comparing the attack probability rk | k obtained in (41) with the threshold 0.5. Figure 5 provides a com-
parison between the true and the estimated values of states x1 and x2 (clearly the only state components affected by the
signal attack). Note that the state estimate is obtained by means of a MAP estimator, ie, by extracting the Gaussian mean
with the highest weight from the posterior density p0(·) (42) or p1(·, ·) (43), according to the current value of the attack
probability. Finally, Figure 6 shows how the attack estimates extracted from p(a) of the two components of the attack vec-
tor, coincide with the actual values inside the attack time interval [150, 350]. Note that, outside that interval, the estimates
of the attack vector are not meaningful because the attack probability rk | k is almost 0.
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FIGURE 4 True and estimated attack
probability [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 5 True and estimated state
components x1 and x2 [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 6 True and estimated attack
components a1 and a2 [Colour figure can be
viewed at wileyonlinelibrary.com]

6.2 IEEE 14-bus power network
State estimation is of paramount importance to ensure the reliable operation of energy delivery systems since it provides
estimates of the power grid state by processing meter measurements and exploiting power system models. Cyberattacks
on power systems can alter available information at the control center and generate fake meter and input data, poten-
tially causing power outage and forcing the energy management system to make erroneous decisions, eg, on contingency
analysis and economic dispatch. The proposed GM-HBF was tested on the IEEE 14-bus system (Figure 7) consisting
of 5 synchronous generators and 11 load buses, with parameters taken from MATPOWER.33 The dynamics of the system
can be described by the linearized swing equation34 derived through Kron reduction35 of the linear small-signal power
network model. The DC state estimation model assumes 1 p.u. (per unit) voltage magnitudes in all buses and j1 p.u.
branch impedance, with j denoting imaginary unit. The system dynamics is represented by the evolution of n = 10 states
comprising both the rotor angles 𝛿j and the frequencies 𝜔j of each generator j in the network. After discretization (with
sampling interval T = 0.01 s), the model of the system takes the form (1)-(2), where the whole state is measured by a

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 7 Single-line model of the IEEE 14-bus system. The true
victim load buses 3 and 9 are circled in red [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 8 Number of extra fake measurements injected (blue
circles) and undelivered (pd = 0.95) system-originated observations
(red cross in −1) vs time. The proposed Gaussian mixture hybrid
Bernoulli filter turns out to be particularly robust to extra packet
injection attacks [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 9 Performance of
the Gaussian mixture hybrid
Bernoulli filter in terms of (A)
joint attack detection and (B)
estimation of attack signal, (C)
rotor angles 𝛿i, i = 1, … , 5, and
(D) frequencies 𝜔i, i = 1, … , 5.
RMSE, root mean square error
[Colour figure can be viewed at
wileyonlinelibrary.com]

network of sensors i. The system is assumed to be corrupted by additive zero mean Gaussian white process and mea-
surement noises with variances 𝜎2

w = 0.01 and 𝜎2
v = 0.01. At time k = 50, a signal attack vector a = [0.2, 0.1]T p.u. is

injected into the system to abruptly increase the real power demand of the two victim load buses 3 and 9 with an additional
loading of 21.23% and, respectively, 33.9%. This type of attack, referred to as load altering attack,36 can provoke a loss of
synchrony of the rotor angles and hence a deviation of the rotor speeds of all generators from their nominal value. In addi-
tion, we fixed the following parameters: pb = 0.05, ps = 0.95, pd = 0.95, pruning and merging thresholds 𝛾p = 10−2 and

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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𝛾m = 3 for the GM implementation. Let us first consider the system under extra packet injection attack. The additional
fake measurements injected into the sensor channels are modeled as uniformly distributed over the interval [−10, 5], suit-
ably chosen to emulate system-originated observations. Fake and missed packets are shown in Figure 8 for a specific run.
The joint attack detection and state estimation performance of the GM-HBF algorithm has been analyzed by Monte Carlo
simulations. Figure 9 shows the true and estimated probability of attack existence (Figure 9A) and the root mean square
error (RMSE), averaged over 1000 Monte Carlo runs, relative to the rotor angle (Figure 9B) and frequency (Figure 9C)
estimates. Figure 9D shows the RMSE of the estimated components of the signal attack, extracted from p1

k |k(a, x). As
shown in the results (Figures 9A-D), the proposed secure state estimator succeeds in promptly detecting a signal attack
altering the nominal energy delivery system behavior and hence in being simultaneously resilient to integrity attacks on
power demand and robust to extra fake packets and undelivered measurements. Figure 10 provides, for a single Monte
Carlo trial, a comparison between the true and the estimated values of the two rotor angles mainly affected by the victim

FIGURE 10 Estimated vs true trajectory of rotor angles
𝛿j, j = 1, 3. Note that, if |𝛿j| is sufficiently large (values close to 𝜋∕2),
the linear small signal approximation significantly deviates from the
nonlinear dynamics of the system and, hence, the assumed dynamic
model becomes inaccurate [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 11 Estimated vs true trajectory of frequencies 𝜔1 and 𝜔3 [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Performance of
the Gaussian mixture hybrid
Bernoulli filter under packet
substitution attack (pf = 0.3) in
terms of (A) attack detection,
(B) attack reconstruction, and
(C)-(D) state estimation. RMSE,
root mean square error [Colour
figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 13 Mean RMSE on state (generator rotor angles and
frequencies) and attack estimation under packet substitution as a
function of filter parameter pf . Simulated packet substitutions occur
with probability p̄𝑓 = 0.1. The choice of pf can improve estimation
performance (the best results are obtained when p𝑓 = p̄𝑓 ), which,
however, turns out to be comparable for most parameter values in
the set {10−5, 10−4, 10−3, 10−2, 0.1, 0.5, 0.9}. RMSE, root mean square
error [Colour figure can be viewed at wileyonlinelibrary.com]

load buses and clearly shows how 𝛿1 and 𝛿3 lose synchrony once the load altering attack enters into action. Nevertheless,
the proposed secure filter keeps tracking the state evolution with high accuracy even after time k = 50, once recognized
that the system is under attack.

Finally, Figure 11 shows the performance of the GM-HBF in estimating the generator frequencies 𝜔1 and 𝜔3, before
and after the appearance of the signal attack on the victim loads. The performance of the proposed GM-HBF under packet
substitution attack, ie, the filter adopting the correction step described in Section 3.1, is shown in Figure 12 for pf = 0.3
and pd = 1. It is worth noting that the probability of packet substitution pf can be seen as a design parameter that can
be suitably tuned so as to enhance estimation performance. This is illustrated in Figure 13 where the mean (over time,
components, and Monte Carlo runs) RMSE on state/attack estimation is shown as a function of parameter pf. By contrast,
simulation results indicated that the choice on pf does not significantly affect the overall attack detection performance.

7 CONCLUSIONS

This paper proposed a general framework to solve resilient state estimation for (linear/nonlinear) CPSs considering
switching signal attacks, fake measurement injection, and packet substitution. RFSs have been exploited in order to model
the switching nature of the signal attack as well as the possible presence of fake measurements, and a Bayesian random set
estimation problem has been formulated for jointly detecting a signal attack and estimating the system state. In this way,
a HBF for the Bayes-optimal solution of the posed problem has been derived and implemented as a Gaussian-sum filter.
Numerical examples concerning both a benchmark system with direct feedthrough and a realistic energy delivery system
have been presented so as to demonstrate the potentials and the real-world applicability of the proposed approach. Future
work will concern worst-case performance degradation analysis for the developed filter and its application to resilient
state estimation in distributed settings with nonsecure communication links.
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