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Abstract—This paper presents an unsupervised approach to
extract maritime Patterns of Life (PoL) from historical Automatic
Identification System (AIS) data based on a low-dimensional
synthetic representation of ship routes. Recent advances in
long-term vessel motion modeling through Ornstein-Uhlenbeck
mean-reverting stochastic processes make it possible to encode
knowledge about maritime traffic via a compact graph-based
model where waypoints are graph vertices and the connections
between them, i.e., the navigational legs, are graph edges. The
resulting directed graph ultimately leads to the detection and
statistical characterization of recurrent maritime traffic patterns.
The proposed methodology has been tested on two extensive AIS
datasets, collected for the North Sea and Ionian Sea operational
trials of H2020-EU MARISA (Maritime Integrated Surveillance
Awareness), to demonstrate the effectiveness and computational
efficiency on real-world applications.

Index Terms—Automatic Identification System, maritime situ-
ational awareness, Pattern-of-Life, Ornstein-Uhlenbeck process,
change detection, DBSCAN clustering, maritime traffic graph

I. INTRODUCTION

Extracting recurrent ship mobility patterns is crucial to
improve Maritime Situational Awareness (MSA), which aims
at understanding behaviors and activities that have an im-
pact on the maritime environment. Ship traffic monitoring
represents one of the biggest challenges in terms of law
enforcement, search and rescue, environmental protection and
resource management and, in recent years, has led to intensive
research activities in order to exploit new methodologies in
support of maritime surveillance. The concept of Pattern-of-
Life (PoL) is commonly used in the context of activity-based
intelligence which aims at understanding complex behaviors
showing some regularity. In the maritime domain, this term
is used to describe normal patterns of behavior of ships, i.e.
recurrent maritime traffic patterns and summary statistics on
the volume and type of vessels that, if well-characterized, can
be beneficial for MSA applications such as anomaly detection.
Nowadays, recently developed satellite and terrestrial networks
of cooperative self-reporting ship location systems, such as
the Automatic Identification System, provide ever-increasing
volumes of maritime traffic data that can be used to enhance
the general awareness of vessel pattern-of-life activities in both
coastal and open waters.
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As established by the International Maritime Organization’s
(IMO) Convention for the Safety of Life at Sea (SOLAS) [1],
Automatic Identification System (AIS) must be on board all
vessels with gross tonnage of 300 or more, and passenger ships
of any size. This way AIS has become the major source, by
coverage and volume of data, of maritime traffic monitoring,
as each AIS transmitting vessel will report its identity (MMSI
number), position, speed over ground (SOG), course over
ground (COG), and other relevant information. On the one
hand, this vast amount of information is becoming increasingly
intractable to human operators, and calls for a high degree
of automation in maritime route extraction and synthetic
representation in order to convert data into usable knowledge
for operational authorities and policy-makers. On the other
hand, the availability of big maritime data opens up new
possibilities for creating new types of analyses and extracting
new information at one’s disposal for MSA applications in-
cluding anomaly detection [2]–[4], knowledge-based tracking
and classification, prediction of long-term vessel motion and
behaviors, threat assessment, etc.

Previous work on extracting maritime patterns focused on
modeling the normal traffic activities in support of anomaly de-
tection. In this context, [5] designs motion anomaly detectors
based on the patterns extracted from AIS data in the framework
of adaptive kernel density estimation. A machine learning
framework performing the tasks of clustering, classification
and outlier detection has been developed in [6] to represent
vessel traffic and detect anomalous behaviors. Other proposed
methods include associative learning procedures based on bio-
logical principles to determine abnormal behaviors and predict
future vessels positions [7], and a two-level representation of
maritime traffic [8] tested in the Baltic Sea region. Another
well-known approach is for maritime traffic characterization
is Traffic Route Extraction for Anomaly Detection (TREAD)
[9]. TREAD generates a dictionary of historical vessel PoL
represented by waypoint and route objects, containing dynamic
and static AIS properties. A key property of TREAD is that
waypoints and routes can be merged, split, removed, created
as new data is collected. This comes at the expense of signif-
icantly increased computational costs due to a complex early-
stage analysis of flag states, directions, velocities, destinations,
and the required integration with databases.

Building on a compact synthetic representation of maritime



traffic routes proposed in [10], this paper presents and validates
through large-scale real-world applications an unsupervised
approach to automatically and efficiently extract maritime
patterns of life from large volumes of historical AIS data.
In particular, based on the fact that i) the majority of ship
mobility is actually very regular since routes are usually
computed based on fuel consumption, and ii) vessels in deep
waters rarely perform maneuvers, the idea is to reduce ship
trajectories into a sequence of waypoints (spatial regions where
ships regularly stop or change their velocity) and navigational
legs (whereon ships show a non-maneuvering behavior). This
allows us to extract a compact, low-dimensional graph-based
model of maritime traffic from raw AIS data where waypoints
are represented by graph vertices and the connections between
them, i.e., the navigational legs, are represented by directed
graph edges.

Recent developments in long-term vessel motion modeling
[11], have shown that the motion of ships along each tra-
jectory can be effectively described by a piecewise Ornstein-
Uhlenbeck (OU) mean-reverting stochastic process where
model parameters switch in correspondence of waypoints. By
adopting this strategy to encode recurrent maritime traffic
patterns, unsupervised procedures have been developed to
automatically extract knowledge via change detection tools
aimed at finding relevant waypoints [12], and parameter es-
timation techniques to infer the dynamic behavior of ships
in each navigational leg [13]. In order to discover significant
waypoint areas, change points corresponding to the same geo-
graphical region are grouped into waypoint clusters, progres-
sively simplified and merged using an incremental DBSCAN
(i.e., Density-Based Spatial Clustering of Applications with
Noise) procedure [14]. The resulting knowledge is shaped in
a compact form via waypoints and navigational legs, generated
and updated from the sequence of input AIS messages. The
creation of such a maritime traffic graph ultimately leads to
the detection and statistical characterization of maritime traffic
patterns of life.

The effectiveness and computational efficiency of the pro-
posed maritime patterns extraction tools have been investigated
within the H2020-EU Project MARISA, where NATO-STO
CMRE contributed to developing data fusion services for
maritime surveillance including the ship routes extraction
module.

II. GRAPH-BASED REPRESENTATION OF MARITIME
TRAFFIC

A. Dynamic model of long-term vessel motion

In order to be able to extract information about maritime
traffic from the available AIS data, the key ingredient is a
suitable mathematical model to describe the long-term motion
of ships in open seas. The analysis of real-world AIS data
shows that a significant portion of commercial maritime traffic,
given that ships often try to optimize fuel consumption, is
characterized by infrequent maneuvers.

Recently, it has been demonstrated in [11] that, by modeling
the dynamics of non-maneuvering ships by means of the

Ornstein-Uhlenbeck (OU) mean-reverting stochastic process,
we can reduce by several orders of magnitude the uncertainty
region of the long-term predicted position with respect to
traditional state-of-the-art models (such as the nearly-constant
velocity model). The main difference between the OU process
and other conventional dynamic models is the presence of a
feedback loop, which ensures that the velocity of the target
does not diverge with time, but is instead bounded around a
finite value, representing the desired (cruise) velocity of the
ship.

Let the kinematic state of a ship be denoted by x(t) =
[p(t), ṗ(t)], where p(t) and ṗ(t) are the position and, respec-
tively, velocity of a vessel in a two-dimensional Cartesian
coordinate system. Then, the ship dynamics can be described
by the following stochastic differential equation:

ẋ(t) = Ax(t) +Bu+Dẇ(t), (1)

where u = [ux, uy]T is the long-run mean velocity and w(t)
is a standard 2-D Wiener process. The matrices A,B and D
are defined as

A =

[
02 I2
02 −Λ

]
, B =

[
02
Λ

]
, D =

[
02
Ω

]
, (2)

where 02 and I2 are the 2-by-2 null and identity matrices,
respectively, Λ ∈ R2×2 quantifies the mean-reversion effect,
while Ω represents the process noise. If Λ has positive and
distinct eigenvalues, then it can be written as Λ = ḠΓḠ−1,
where Γ = diag(γ). The target state evolution is given by the
first moment of the solution of (1), which takes the form

xk = GΦ̃(tk − tk−1, γ)G−1x(tk−1)

+GΨ̃(tk − tk−1, γ)Ḡ−1u+ wk, (3)

where G = I2⊗ Ḡ and ⊗ denotes the Kronecker product. The
full expressions of Φ̃(t, γ), Ψ̃(t, γ) can be found in [11], [13].

Although (3) is best suited to capture the motion of non-
maneuvering ships whose long-run mean velocity does not
change over time, this model can be easily adapted to represent
linear piecewise trajectories. These are useful to describe
maritime traffic, which has been shown to be very regular, as
most ships tend to navigate by following a sequence of way-
points. Hence, ships trajectories can be compactly represented
by piecewise mean-reverting stochastic processes where each
segment (or navigational leg) is characterized by a different
long-run mean velocity, piecewise-constant over time, and by
a set of waypoints, each corresponding to geographical regions
where changes in velocity are likely to happen. Those regions
will represent the nodes of the resulting maritime traffic graph.

The key challenge is that, in practical maritime traffic
surveillance, waypoints and navigational legs are not known a
priori. This motivates the development of unsupervised algo-
rithms that, given the available historical AIS data, automati-
cally extract a graph-based model of maritime traffic patterns
by using change detection tools and clustering methods to
find relevant waypoints, and parameter estimation techniques
to compute the mean velocity in each navigational leg.



B. Detection of navigational change points

Based on the Ornstein-Uhlenbeck dynamic model for accu-
rate long-term ship prediction, efficient statistical procedures
[10], [12] can be developed to automatically identify specific
geospatial waypoints where the parameters of the underlying
OU process tend to change. In particular, if we assume that
the long-run mean velocity of the process can abruptly change
at any time instant, then the following sequential detection
procedure based on Page’s test [15] can be used to estimate
the piecewise long-run velocity (see [12] for details):

1) First, the velocity of a ship is estimated using a sample
mean estimator on n velocity samples;

2) Second, two Cumulative Sum (CUSUM) statistics are
initialized in parallel to detect possible positive and
negative changes of velocity;

3) Finally, if one of the two statistics exceeds a given
threshold τ , then a change point is detected.

It is worth noting that the change detection capability depends
on the value of τ , since low values will lead to a large number
of detections, whereas high values will either prevent detection
or worsen the performance in terms of average run length.

In other words, the above change detection procedure relies
on the estimation of the long-run mean velocity parameter
of the OU process, before and after a change. The CUSUM
is computed in step 2) and, if a deviation from the desired
threshold is observed, a change of the long-run mean velocity
is declared. In this work, we considered four different types
of change points: ports, navigational waypoints, entry and exit
points.

C. Clustering of navigational waypoints

To find significant waypoint areas, standard clustering tech-
niques can be used in order to group together multiple change
points into a lower number of distinct waypoint clusters.
Here, the DBSCAN (Density-Based Spatial Clustering Of
Applications With Noise) algorithm [14] is adopted to as-
sociate detected change points to waypoint clusters based
on a Mahalanobis distance that takes into account not only
position, but also velocity. DBSCAN is a well-known data
clustering algorithm, commonly used in data mining and
machine learning. The main pros of using DBSCAN with
respect to other state-of-the-art clustering methods, are its
capability to identify an arbitrary number of clusters (no prior
number of clusters needs to be predefined) of arbitrary shape,
as well as its robustness to noisy data which makes it well-
suited for our application. The DBSCAN algorithm basically
requires to set only two parameters: i) the minimum distance
ε, such that if the distance between two points is lower or
equal to ε, the two points will be clustered together; ii) the
minimum number η of points needed to form a dense cluster.

The clustering of navigational waypoints is based on the
following Mahalanobis distance in a four-dimensional feature
space as similarity measure between nodes i and j:

dij = (φi − φj)T Σ−1 (φi − φj)

where Σ is a weighting matrix. The feature vector of change
point i is defined as φi = [pi, θi]

T where pi denotes the
position detected through Page’s test, while θi = [θini , θ

out
i ]T

contains the velocity angle before and after the change. In-
tuitively, DBSCAN will look for regions where navigational
change points are very close in the feature space and will
identify outliers as points lying in low-density regions. In our
approach, a large volume of historical AIS data is used to
generate the traffic graph. However, as the amount of available
AIS data grows to massive scales, computational techniques
are needed to process, manage and store data efficiently. In
this regard, we developed a fast and scalable implementation
of DBSCAN that computes only distances between change
points that are nearest neighbors, i.e. such that the distance
metric between those data points is less than or equal to a
predefined radius. This allows us to avoid computing the full
large-scale matrix of all-to-all distances.

III. EXTRACTION OF MARITIME PATTERNS

Starting from a collection of raw AIS messages, a ship tra-
jectory can be represented by means of a set of waypoints and
a piecewise constant profile for the long-run mean velocity.
This allows us to extract a low-dimensional representation
of maritime traffic that can be encoded through a directed
weighted graph, whose nodes represent navigational way-
points, while edges represent navigational legs. Each edge is
assigned a weight, proportional to the number of vessels which
transitioned from the source to the target node of that specific
link. By using this graph-based model, we can automatically
extract maritime traffic patterns from AIS data.

A. Merging and pruning procedures

In real-world applications the procedure presented in Sec-
tion II has to necessarily deal with all the underlying non-
idealities. Although some of them are taken into account
and compensated in the pre-processing stages described in
[12], residual sources of noise and errors may rise after the
clustering step. Moreover, when clustering algorithms such
as DBSCAN are applied to large-scale real-world datasets
involving a huge number of data points, the output generated
by such unsupervised classification will usually need some
post-processing.

In particular, pruning and merging techniques can be used
to progressively improve and simplify the overall maritime
traffic graph by reducing the number of graph entities (i.e.,
nodes and edges), and thus encode knowledge about ships’
patterns using a lower-dimensional representation. The number
of graph edges can be reduced by eliminating those links
characterized by low weights that are least likely to represent
recurrent maritime patterns, and by merging closely-spaced
edges (connecting close source-target nodes) into one, as they
are more efficiently represented by a single route. Moreover,
edges falling over land are removed by a land avoidance
logic based on bathymetry data. The number of waypoints
clusters is also reduced by removing unreachable nodes that
might originate from temporal and spatial gaps in the AIS



data. This can be the effect of a ship that either turned off
the AIS transceiver or simply exited the coverage area. In
addition, statistically close clusters (i.e., that fall within a given
Mahalanobis distance) are also grouped together into a single
waypoint node.

B. Graph structure and attributes

Using graph formalism, the structure of maritime traffic
in the area of interest during a reference time interval can
be represented by a directed graph G = (N , E) where
N = {1, 2, ..., N} is the set of nodes and E ⊆ N × N
is the set of edges. In particular, it is supposed that (i, j)
belongs to E if and only if there are ship tracks with two
consecutive waypoints i and j, where node i is the predecessor
of node j. In this way, the adjacency matrix of the graph A
can be directly constructed from the raw ship tracks data (i.e.,
time-ordered lists of AIS messages) by simply identifying the
transitions (and associated direction) of ships from a generic
pair of nodes. We also assume that (i, i) /∈ E for any i ∈ N , so
that diagonal elements of A are set to zero, i.e. G is a simple
directed graph with no self-loops.

In the context of H2020-EU MARISA, waypoints nodes
and edges have been represented as vector features with
different attributes directly extrapolated from the available AIS
messages or computed during the graph extraction phase. The
attributes of each node entity include: waypoint identifier, type,
geographical location, traffic data category, statistics about
the inward/outward speed of ships, and number of vessels
that passed through the waypoint. Edges attributes sum up
properties of source and target nodes. The resulting geospatial
information layer, that can be used and shared to generate
maps and display attributes of features, serves as a baseline
reference of maritime traffic for different MSA applications.

IV. REAL-WORLD APPLICATIONS: NORTH SEA AND
IONIAN SEA

A. North Sea

The unsupervised approach presented in this paper has been
applied to an extensive dataset of more than 5.5 millions
of AIS messages broadcast by commercial cargo ships, and
collected by a worldwide network of satellite and terrestrial
receivers. The available AIS data was recorded from April to
June 2018 in the area of the North Sea, spanning more than
8×105 km2, approximately from 0◦ to 10◦ longitude and from
45◦ to 60◦ latitude.

The parameters of the Ornstein-Uhlenbeck process are set
as follows: Γ = γI2, Ω = ωI2 with γ = 3 × 10−3 and ω =
14.1×10−3. The clustering parameters are chosen as ε = 0.14
and η = 4. After aggregating the available AIS data into 19009
tracks, the change detection routine described in Section II-B
detects 162662 navigational change points. Those waypoints
get clustered by DBSCAN into 2286 graph nodes connected
through 5504 graph edges.

Finally, pruning and merging procedures are executed to
improve the final output of the proposed maritime traffic
extraction scheme. A qualitative representation of the resulting

Fig. 1. Maritime traffic graph extracted from the North Sea AIS dataset,
April-June 2018.

graph is shown in Fig. 1, where the main commercial routes
and the paths connecting the major ports in the area have been
correctly identified and extracted.

B. Ionian Sea

The proposed approach for unsupervised maritime patterns
extraction has been also tested on an AIS dataset collected in
the Ionian Sea area from June to August 2018. The extent of
the collected AIS data is shown in Fig. 2, where a density
map of the spatial distribution of AIS messages in the area of
interest is reported. Each pixel in the figure covers a 6-by-6
nmi (one-tenth-degree) square on the ground and its color is
proportional to the logarithm of the number of recorded AIS
messages whose reported positions fall within its footprint.

The results of ship routes extraction on the Ionian Sea
dataset are shown in Fig. 3. As we can see from the com-
parison against the density map in Fig. 2, the proposed
unsupervised approach succeed in correctly capturing the main
navigational waypoints and the high-density traffic routes from
the available AIS data.

CONCLUSION AND FUTURE WORK

In this paper we presented and validated through real-
world applications an unsupervised approach to automatically
extract a synthetic representation of maritime traffic routes
from large volumes of historical AIS data. The key novelty
of this method is the introduction of a compact graph-based
model of maritime traffic, which in turn relies on a novel
statistical modeling of ship motion. The ability to extract
meaningful patterns from large amounts of noisy data is a



Fig. 2. Density map of AIS messages collected from June to August 2018
in the Ionian Sea region.

Fig. 3. Maritime traffic graph extracted from raw Ionian Sea AIS data, June-
August 2018.

critical capability for operators, as the overwhelming amount
of ship mobility data does not allow for an effective human
inspection of the maritime traffic. With respect to other ex-
istent solutions, the graph-based representation of the traffic
opens up to new opportunities for traffic analysis that could
potentially have operational relevance, such as traffic network
analysis.

Future work will focus on exploiting the knowledge ex-
tracted about maritime traffic to improve ship routes predic-
tion, as well as on the introduction of novel criteria to assess
the performance of maritime patterns extraction methods.
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