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Abstract

The paper deals with decentralized state estimation for spatially distributed systems described by linear partial
differential equations from discrete in-space-and-time noisy measurements provided by sensors deployed over the
spatial domain of interest. A fully scalable approach is pursued by decomposing the domain into overlapping
subdomains assigned to different processing nodes interconnected to form a network. Each node runs a local finite-
dimensional Kalman filter which exploits the finite element approach for spatial discretization and the parallel
Schwarz method to iteratively enforce consensus on the estimates and covariances over the boundaries of adjacent
subdomains. Stability of the proposed distributed consensus-based finite element Kalman filter is mathematically
proved and its effectiveness is demonstrated via simulation experiments concerning the estimation of a bi-dimensional
temperature field.
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I. INTRODUCTION

THE recent breakthrough of wireless sensor network technology has made possible to cost-effectively monitor
spatially distributed systems via deployment of multiple sensors over the area of interest. This clearly paves

the way for several important practical monitoring applications concerning, e.g., weather forecasting [1], water flow
regulation [2], fire detection, diffusion of pollutants [3], smart grids [4], vehicular traffic [5]. The problem of fusing
data from different sensors can be accomplished either in a centralized way, i.e. when there is a single fusion
center collecting data from all sensors and taking care of the overall spatial domain of interest, or in distributed
(decentralized) fashion with multiple intercommunicating fusion centers (nodes) each of which can only access part
of the sensor data and take care of a sub-region of the overall domain. The decentralized approach is preferable in
terms of scalability of computation with the problem size and will be, therefore, undertaken in this paper.

Since spatially distributed processes are usually modeled as infinite-dimensional systems, governed by partial
differential equations (PDEs), distributed state estimation for such systems turns out to be a key issue to be addressed.
While a lot of work has dealt with distributed consensus-type filters for finite-dimensional, both linear [6]–[9] and
nonlinear [10], systems as well as for multitarget tracking [11], considerably less attention has been devoted to the
more difficult case of distributed-parameter systems.

Recent work [12]–[16] has addressed the design of distributed state estimators/observers for large-scale systems
formed by the sparse interconnection of many subsystems (compartments). Such systems are possibly (but not
necessarily) originated from spatial discretization of PDEs. In particular, [12] presents a fully scalable distributed
Kalman filter based on a suitable spatial decomposition of a complex large-scale system as well as on appropriate
observation fusion techniques among the local Kalman filters. In [13], non-scalable consensus-based multi-agent
estimators are proposed wherein each agent aims to estimate the state of the whole large-scale system. In [14], a
moving-horizon partition-based approach is followed in order to estimate the state of a large-scale interconnected
system and decentralization is achieved via suitable approximations of covariances. Further, [15] deals with dynamic
field estimation by wireless sensor networks with special emphasis on sensor scheduling for trading off commu-
nication/energy efficiency versus estimation performance. In [16], design of distributed continuous-time observers
for partitioned linear systems is addressed.

The authors are with the Dipartimento di Ingegneria dell’Informazione (DINFO), Università di Firenze, Firenze, Italy. e-mails:
{giorgio.battistelli,luigi.chisci,nicola.forti,stefano.selleri,giuseppe.pelosi} @unifi.it.
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As for the specific case of distributed-parameter systems, interesting contributions have been provided in [17],
[18] which present consensus filters wherein each node of the network aims to estimate the system state on the
whole spatial domain of interest.

In the present paper, as compared to [17], [18], a different strategy is adopted in which each node is only
responsible for estimating the state over a sub-domain of the overall domain. This setup allows for a solution which
is scalable with respect to the spatial domain (i.e., the computational complexity in each node does not depend
on the size of the whole spatial domain but only of its region of competence). In this context, the contribution
of the present paper is essentially in three directions. First, we develop scalable consensus filters for distributed
parameter systems by suitably adapting the so called Schwarz domain decomposition methods [19]–[24], originally
conceived to solve a boundary value problem by splitting it into smaller subproblems on subdomains and iterating to
achieve consensus among the solutions on adjacent subdomains. Secondly, we exploit the finite element (FE) method
[25]–[27] in order to approximate the original infinite-dimensional filtering problem into a, possibly large-scale,
finite-dimensional one. Combining these two ingredients, we propose a novel distributed finite element Kalman
filter which generalizes to the more challenging distributed case previous work on FE Kalman filtering [28], [29].
Third, we provide results on the numerical stability of the proposed space-time discretization scheme as well as on
the stability of the proposed distributed FE Kalman filter. Preliminary ideas on the topic can be found in [30].

The rest of the paper is structured as follows. Section II introduces the basic notation and problem formulation.
Then Section III presents the centralized FE Kalman filter for distributed-parameter systems. Section IV shows how
to extend such a filter to the distributed setting by means of parallel Schwarz consensus and analyzes the numerical
stability in terms of boundedness and convergence of the discretization errors. Then, section V provides results on
the exponential stability of the proposed distributed FE Kalman filter while section VI demonstrates its effectiveness
via numerical examples related to the estimation of a bi-dimensional temperature field. Finally, section VII ends
the paper with concluding remarks and perspectives for future work.

II. PROBLEM FORMULATION

This paper addresses the estimation of a scalar, time-and-space-dependent, field from given discrete, in both time
and space, measurements related to such a field provided by multiple sensors placed within the domain of interest.
The scalar field to be estimated x (p, t) is defined over the space-time domain Ω× IR+, as the solution of a partial
differential equation (PDE) of the form

∂x

∂t
+A(x) = f (1)

with (possibly unknown) initial condition x (p, 0) = x0(p), p ∈ Ω, and homogeneous boundary conditions

B(x) = 0 on ∂Ω . (2)

The space domain Ω is supposed to be bounded and with smooth boundary ∂Ω.
The measurements

yq,i = hi (x (si, tq)) + vq,i (3)

are provided by sensors i ∈ S 4= {1, . . . , S}, located at positions si ∈ Ω, at discrete sampling instants tq, q ∈
Z+ = {1, 2, . . . }, such that 0 < t1 < t2 < · · · . In (1)-(3): p ∈ Ω denotes the d-dimensional (d ∈ {1, 2, 3}) position
vector; A(·) and B(·) are linear operators over a suitable Hilbert space V , with A(·) self-adjoint; f (p, t) is a
forcing term possibly affected by process noise; hi(·) is the measurement function of sensor i; vq,1, . . . , vq,N are
mutually independent white measurement noise sequences, also independent from the initial state x0(p) = x (p, 0)
for any p ∈ Ω.

More precisely, the aim is to estimate x(p, t) given the information set Y t 4= {yq,i,∀i ∈ S and ∀q : tq ≤ t}. This
is clearly an infinite-dimensional filtering problem. In the next section, it will be shown how it can be approximated
into a finite-dimensional filtering problem by exploiting the FE method [25]- [26].

An example of the above general problem is the estimation of the temperature field x over the spatial domain
of interest given point measurements of temperature sensors. In this case, V is usually taken as the Sobolev space
H1(Ω), the measurement function is simply h(x) = x, while the PDE (1) reduces to the well known heat equation
with A(x) = −∇·(λ∇(x)) and B(x) = α∂x/∂n+βx with α(p)β(p) ≥ 0, α(p)+β(p) > 0, ∀p ∈ ∂Ω. Here λ(p)
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is the thermal diffusivity, · stands for scalar product, ∇ 4
= ∂/∂p denotes the gradient operator, n is the outward

pointing unit normal vector of the boundary ∂Ω, and ∂x/∂n = ∇x · n. Clearly, when the thermal diffusivity is
space-independent, one has A(x) = −λ∇2(x), where ∇2 = ∇ · ∇ is the Laplacian operator.

Notice that considering homogeneous boundary conditions as in (2) is not restrictive, since the non-homogeneous
case B(x) = g on ∂Ω can be subsumed into the homogeneous one by means of the change of variables z = x−w,
where w is any function belonging to V and satisfying the non-homogeneous boundary conditions.

III. CENTRALIZED FINITE ELEMENT KALMAN FILTER

In this section, it is shown how to approximate the continuous-time infinite-dimensional system (1) into a discrete-
time finite-dimensional linear dynamical system within the FE framework.

By subdividing the domain Ω into a suitable set of non overlapping regions, or elements, and by defining a
suitable set of basis functions φj(p) ∈ V (j = 1, . . . , n) on them, it is possible to write an approximation of the
unknown function x(p, t) as

x(p, t) ≈
n∑
j=1

φj(p)xj(t) = φT (p) x(t) (4)

where: xj(t) is the unknown expansion coefficient of function x(p, t) relative to time t and basis function φj(p);

φ(p)
4
= col{φj(p)}nj=1 and x(t)

4
= col{xj(t)}nj=1.

The choices of the basis functions φj and of the elements are key points of the FE method. Typically, the elements
(triangles or quadrilaterals in 2D, tetrahedral or polyhedral in 3D) define a FE mesh with vertices pj ∈ Ω, j =
1, . . . , n. Then each basis function φj is a piece-wise polynomial which vanishes outside the FEs around pj and
such that φj(pi) = δij , δij denoting the Kronecker delta.

In order to apply the Galerkin weighted residual method, let the PDE (1) be recast in the following (weak)
integral form ∫

Ω

∂x

∂t
ψ dp +

∫
Ω
A(x)ψ dp =

∫
Ω
f ψdp (5)

where ψ(p) is a generic space-dependent weight function. The following assumption is now needed.

A1. Under the boundary conditions (2), the quadratic form
∫

ΩA(ψ)ψ dp is bounded and coercive (i.e., positive
definite).

Then, by choosing the test function ψ(p) equal to the selected basis functions and exploiting the approximation
(4) in (5), thanks to the linearity of operator A(·) the usual FE weak form is obtained [25]- [26][∫

Ω
φ(p)φT (p)dp

]
︸ ︷︷ ︸

M

ẋ(t) +

[∫
Ω
φ(p) [A (φ(p))]T dp

]
︸ ︷︷ ︸

S

x(t)

=

∫
Ω
φ(p)f(p, t)dp︸ ︷︷ ︸

u(t)

(6)

where A (φ)
4
= col {A(φj)}nj=1. It is evident how the first two integrals in (6) depend only on basis functions and

can be computed a priori. In particular, the first integral yields the well known mass matrix M, while the second
depends on the operator A(·) and, in the thermal case, is the stiffness matrix S [25]. The third integral depends
on the forcing term f , which is assumed to be known, and can hence be computed a priori, leading to a time
dependent vector contribution u(t).

It is worth pointing out that, in the FE weak form (6), the boundary conditions (2) can be accounted for in
two different ways [25], [26]. The so-called essential boundary conditions are handled by imposing them on the
solution, i.e., by choosing basis functions belonging to V0 = {x ∈ V : B(x) = 0 on ∂Ω}. On the other hand,
the so-called natural boundary conditions can be directly incorporated into the weak form (5). For example, in the
case of the heat equation, the (isotherm) homogeneous Dirichlet boundary conditions x = 0 on ∂Ω are essential,
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while the (adiabatic) homogeneous Neumann boundary conditions ∂x/∂n = 0 are natural. Of course, by letting
the functions α and β vary on ∂Ω, we can also have a problem with mixed essential/natural boundary conditions.
In all the cases, the resulting linear differential equation is of the form

M ẋ + S x = u + ε (7)

where ε arises from the approximation error1 in the finite- dimensional representation (4) of x in terms of basis
functions. Notice that M turns out to be positive definite by linear independence of the basis functions φj(·).
Further, S is positive definite as well thanks to the coercivity of the quadratic form in the left-hand side of (5).
System (7) can be discretized in time by different methods (e.g., backward or forward Euler integration, or the
zero-order-hold method) to provide the discrete-time state-space model

xk+1 = Axk + Buk + wk (8)

where the process noise wk has been introduced to account for the various uncertainties and/or imprecisions (e.g.
FE approximation, time discretization, and imprecise knowledge of boundary conditions). Specifically, the backward
Euler method (here adopted for stability issues) leads to a marching in time FE implementation [27] which yields
(8) with

A =
(
I + ∆M−1S

)−1
, B = AM−1∆,

uk
4
= u((k + 1)∆),xk

4
= x(k∆) = col{xj(k∆)}nj=1

where ∆ denotes the time integration interval. Notice that A is well defined for any ∆ > 0 since both M and S
are positive definite.

In the following, for the sake of notational simplicity, it will be assumed that each sampling instant is a multiple
of ∆, i.e., tq = Tq∆ with Tq ∈ Z+, and we let T = {T1, T2, . . .}; irregular sampling could, however, be easily dealt
with. This amounts to assuming that the numerical integration rate of the PDE (1) in the filter can be higher than
the measurement collection rate, which can be useful in order to reduce numerical errors. In a centralized setting
where all sensor measurements are available to the filter, the measurement equation (3) takes the discrete-time form

yk = h (xk) + vk (9)

for any k = Tq ∈ T , where

yk
4
= col {yq,i}i∈S , h (x)

4
= col

{
hi
(
φT (si)x

)}
i∈S ,

vk
4
= col {vq,i}i∈S

In particular, in the case wherein all sensors directly measure the target field x, i.e. hi(x) = x for all i ∈ S, the
measurement equation (9) turns out to be linear with h(x) = Cx, where

C = col
{
φT (si)

}
i∈S (10)

Summarizing, the original infinite-dimensional continuous-time problem has been reduced to a much simpler finite-
dimensional (possibly large-scale) discrete time filtering problem (a linear one provided that all sensor measurement
functions are linear) to which the Kalman filter, or extended Kalman filter when sensor nonlinearities are considered,
can be readily applied. The resulting centralized filter recursion becomes:

x̂k|k =

{
x̂k|k−1 + Lk

(
yk − h

(
x̂k|k−1

))
if k ∈ T

x̂k|k−1 otherwise

Pk|k =

{
Pk|k−1 − LkC

T
kPk|k−1 if k ∈ T

Pk|k−1 otherwise
x̂k+1|k = Ax̂k|k + Buk

Pk+1|k = APk|kA
T + Qk (11)

1If x is sufficiently smooth, then the FE approximation error is point-wise bounded and converges to zero as the size of the FE mesh
tends to zero.
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where

Ck =
∂h

∂x

(
x̂k|k−1

)
Lk = Pk|k−1Ck

(
Rk + CkPk|k−1C

T
k

)−1

for k ∈ T . The recursion is initialized from suitable x̂1|0 and P1|0 = PT
1|0 > 0. In (11), Qk and Rk denote the

covariance matrices of the process noise wk and, respectively, measurement noise vk, which are assumed as usual
to be white, zero-mean, mutually uncorrelated and also uncorrelated with the initial state x1.

IV. DISTRIBUTED FINITE ELEMENT KALMAN FILTER

In order to develop a scalable distributed filter for monitoring the target field, the idea is to decompose the
original problem on the whole domain of interest into estimation subproblems concerning smaller subdomains,
and then to assign such subproblems to different nodes which can locally process and exchange data. To this end,
let us consider the set of nodes N = {1, . . . , N}, subdivide the domain Ω into possibly overlapping subdomains
Ωm, m ∈ N , such that Ω =

⋃
m∈N Ωm, and assign the task “estimation of x over Ωm” to node m. Further, let

ymq
4
= col {yq,i : si ∈ Ωm} denote the vector of local measurements available to node m at time tq.

Hence, the idea is to run in each node m ∈ N a field estimator for the region Ωm exploiting local measurements
ymq , information from the nodes assigned to neighboring subdomains, as well as the PDE model (1) properly
discretized in time and space. Taking inspiration from the Schwarz method [19]–[21], neighboring local estimators
should iteratively find a consensus on the estimates concerning the common parts. The Schwarz method has been
originally conceived [19] for an iterative solution of boundary value problems. Subsequently, it has received renewed
interest [20], [21] in connection with the parallelization of PDE solvers. In loose terms, the idea of the parallel
Schwarz method is to decompose the original PDE problem on the overall domain of interest into subproblems
concerning smaller subdomains, and then to solve in parallel such subproblems via iterations in which previous
solutions concerning neighboring subdomains are used as boundary conditions. As shown below, such an idea turns
out to be especially useful for the distributed filtering problem considered in this work.

To formalize the consensus let us define, for any m ∈ N , a partition {Γmj}j∈Nm
of ∂Ωm (the boundary of Ωm)

such that
Γmm = ∂Ω ∩ ∂Ωm

∂Ωm =
⋃
j∈Nm

Γmj

Γmj ⊂ Ωj , ∀j 6= m

Γmj ∩ Γmh = ∅, ∀j 6= h

(12)

In this way, each piece Γmj of ∂Ωm for any j ∈ Nm\{m} is uniquely assigned to node j. Notice that in the above
definitions, for each node m, Nm indicates the in-neighborhood of node m, where j is called an in-neighbor of
node m whenever Γmj 6= ∅ (by definition, Nm includes the node m.) This clearly originates a directed network

(graph) G = (N ,L) with node set N and link set L 4= {(j,m) ∈ N ×N : Γmj 6= ∅}.

Fig. 1. Definition of interfaces Γmj in two different configurations with three overlapping subdomains.
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In order to describe the filtering cycle to be implemented in node m within the sampling interval [tq, tq+1), let
us assume that at time t−q , before the acquisition of ymq , such a node is provided with a prior estimate x̂mq|q−1 as
the result of the previous filtering cycles. Let δ be the time interval necessary for performing one consensus step,
i.e., information exchange between neighbors and related computations. Then, Lq

4
= (tq+1 − tq) /δ represents the

number of consensus steps (equal to the number of allowed data exchanges) in the q-th sampling interval. Note
that, for the sake of notational simplicity, hereafter it is supposed that tq+1 − tq is an integer multiple of δ, i.e.,
Lq ∈ Z+. Anyway, the method could easily encompass the general case. Then, the above mentioned filtering cycle
for the proposed distributed estimation algorithm essentially consists of:

1) Correction, i.e. incorporation (assimilation) of the last measurement ymq into the current estimate;
2) Consensus, i.e. alternate exchanges of estimates with the neighborhood Nm and predictions over the time

sub-intervals [tq + (`− 1)δ, tq + `δ] for ` = 1, . . . , Lq, i.e. Lq times.
The proposed Parallel Schwarz Consensus filter is detailed hereafter.

Algorithm 1.
1) Given ymq , update the prior estimate x̂mq|q−1 into x̂mq|q.
2) Initialize the consensus with x̂mq,0 = x̂mq|q and x̂mq,−1 = x̂mq|q.
3) For ` = 1, . . . , Lq proceed as follows

a) Exchange data with the neighborhood; specifically send to neighbor j the data x̂mq,`−1 concerning the sub-
boundary Γjm ⊂ ∂Ωj , and get from neighbor j the data x̂jq,`−1 concerning the sub-boundary Γmj ⊂ ∂Ωm.

b) Solve the problem
x̂mq,` − x̂mq,`−1

δ
+A

(
x̂mq,`
)

= fq,` in Ωm (13)

subject to the Dirichlet boundary conditions

x̂mq,` = x̂jq,`−1 on Γmj ∀j ∈ Nm\{m} (14)

and the linear boundary conditions
B(x̂mq,`) = 0 on Γmm . (15)

where fq,`(p)
4
= f (p, tq + `δ).

4) Set x̂mq+1|q = x̂mq,Lq
for the next cycle.

Some remarks concerning the above reported algorithm are in order. As it can be seen from step 3b), the
information received by neighboring nodes is taken into account by explicitly imposing the non-homogeneous
Dirichlet interface conditions (14) on Γmj , j ∈ Nm \ {m}. Clearly, a delay is introduced in those terms concerning
neighboring nodes which makes the algorithm well-suited for distributed computation. With this respect, it is worth
pointing out that the proposed consensus algorithm is based on the parallel Schwarz method for evolution problems,
which, as well known, enjoys nice convergence properties to the centralized solution as the time discretization step
δ tends to zero [20]- [21]. Hence, it seems a sensible and promising approach to spread the information through
the network. Finally, notice that the prediction step of each local filter is directly incorporated into the consensus
algorithm.

A. Implementation via the finite-element method

In practice, the algorithm, and in particular the solution of the boundary value problem (13)-(15), has to be
implemented via a finite dimensional approximation. In particular, we follow the same approach described in
Section III for the centralized case by constructing a FE mesh for the global domain Ω, and then decomposing such
a grid into N overlapping sub-meshes, according to the domain decomposition. For the sequel, it is important to
distinguish vertices lying on the boundary between neighbors (interface) from the other vertices of the subdomain.
To this end, let int(S) denote the interior of a generic set S. Then, we introduce the sets of indices Im

4
= {i : pi ∈

int(Ωm) ∪ Γmm} and Imj
4
= {i : pi ∈ Γmj} of the basis functions corresponding to internal and, respectively,

interface vertices of subdomain Ωm. In particular, let xm
4
= col{xi : i ∈ Im}, m = 1, . . . , N , denote the vector of
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field values in vertices belonging to int(Ωm)∪ Γmm, i.e. the internal state of subsystem m. Then, it is possible to
extract from (7) the rows relative to states xm so that

Mmm ẋm +
∑

j∈Nm\{m}

Mmjẋj + Smmxm

+
∑

j∈Nm\{m}

Smjxj = um + εm (16)

where the matrices Mmj and Smj take into account the contribution of state variables in vertices pj ∈ Γmj , and εm

accounts for the approximation error in the finite-dimensional representation (4) of x in terms of basis functions.
Notice that both Mmm and Smm are positive definite because so are M and S. As a result, the ODE (7) can be
written as the interconnection of N subsystems of the form (16).

Each of the subsystems (16) can be discretized in time in the interval [tq, tq+1] using a modified backward Euler
technique wherein a delay is introduced in those terms concerning neighboring nodes, so that at time tq + `δ we
obtain the following discrete-time linear descriptor system

Mmm

(
xmq,`+1 − xmq,`

δ

)
+ Smm xmq,`+1

+
∑

j∈Nm\{m}

[
Mmj

(
xjq,` − xjq,`−1

δ

)
+ Smj xjq,`

]
= umq,`+1 + εmq,`+1 + τmq,` (17)

where xmq,`
4
= xm(tq + `δ), for ` = 1 . . . , L, and τmq,` denotes the time discretization error at time tq + `δ. The

recursion (17) is initialized at time tq by setting

xmq,0 = xm(tq),

xjq,0 = xj(tq), xjq,−1 = xj(tq), j ∈ Nm \ {m}
(18)

The well-posedness of the discretization scheme resulting from (17)-(18) will be analyzed in Section IV-B.
It can be readily seen that such a hybrid Euler time discretization implements the Parallel Schwarz method,

described earlier. In fact, it is equivalent to approximate x in Ωm at time tq + `δ as

x(p, tq + `δ) ≈
∑
i∈Im

φmi (p)xm,iq,` (19)

+
∑

j∈Nm\{m}

∑
i∈Imj

φji (p)xj,iq,`−1

which in turn corresponds to explicitly imposing non-homogeneous Dirichlet interface conditions on Γmj , j ∈
Nm \ {m} taken from neighboring nodes (like in (14)).

Thanks to the positive definiteness of Mmm and Smm, each discretized-model (17) can be easily transformed
into a state-space model of the form

xmq,` = Amxmq,`−1 +
∑

j∈Nm\{m}

Amjx̂jq,`−1 (20)

+
∑

j∈Nm\{m}

Āmjxjq,`−2 + Bmumq,` + wm
q,`

where
Am = (Mmm + δSmm)−1 Mmm

Amj = (Mmm + δSmm)−1 (−δSmj −Mmj
)

Āmj = (Mmm + δSmm)−1 Mmj

Bm = (Mmm + δSmm)−1 δ
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and wm
q,` = (Mmm + δ Smm)−1δ

(
ε̃mq,`+1 + τmq,`

)
is the error combining the effects of both spatial and temporal

discretizations.
Such interconnected models can be exploited so as to derive a FE approximation of the distributed-state estimation

algorithm with Parallel Schwarz Consensus (Algorithm 1). In particular, the numerical solution of (13)-(15) takes
the form of the local one-step-ahead predictor for model (20) at time tq + (` − 1)δ, whereas the correction step
of the local filtering cycle is the usual (extended) Kalman filter update step for the local subsystem. The resulting
distributed finite-element (extended) Kalman filter is as follows.

Algorithm 2.
1) Given ymq , update the prior estimate x̂mq|q−1 and covariance Pm

q|q−1 into x̂mq|q and Pm
q|q as follows

x̂mq|q = x̂mq|q−1 + Lmq

(
ymq − hm

(
x̂mq|q−1

))
Pm
q|q = Pm

q|q−1 − Lmq (Cm
q )TPm

q|q−1

Cm
q =

∂hm

∂x

(
x̂mq|q−1

)
Lmq = Pm

q|q−1C
m
q

(
Rm
q + Cm

q Pm
q|q−1(Cm

q )T
)−1

where hm
4
= col {hi : si ∈ Ωm} denote the local measurement function at node m.

2) Initialize the consensus with x̂mq,0 = x̂mq|q, Pm
q,0 = Pm

q|q and x̂mq,−1 = x̂mq|q, Pm
q,−1 = Pm

q|q.
3) For ` = 1, . . . , Lq proceed as follows

a) Exchange data with the neighborhood; specifically send to neighbor j the data x̂mq,`−1,P
m
q,`−1 concerning the

sub-boundary Γjm ⊂ ∂Ωj , and get from neighbor j the data x̂jq,`−1,P
j
q,`−1 concerning the sub-boundary

Γmj ⊂ ∂Ωm.
b) set

x̂mq,` = Amx̂mq,`−1 +
∑

j∈Nm\{m}

Amjx̂jq,`−1

+
∑

j∈Nm\{m}

Āmjx̂jq,`−2 + Bmumq,` (21)

Pm
q,` = γ2 AmPm

q,`−1 (Am)T + Qm (22)

with γ ≥ 1.
4) Set x̂mq+1|q = x̂mq,Lq

and Pm
q+1|q = Pm

q,Lq
for the next cycle.

As previously shown, the additional terms
∑

j∈Nm\{m}Amjx̂jq,`−1 and
∑

j∈Nm\{m} Āmjx̂jq,`−2 in equation (20)
arise from the non-homogeneous Dirichlet boundary conditions (14). In this respect, it is worth noting that the
matrices Amj and Āmj are sparse since only the components of the neighbor estimates x̂jq,`−1 and x̂jq,`−2 concerning
the sub-boundary Γmj are involved. The positive real γ > 1 is a covariance boosting factor whose role, as will be
discussed in the stability analysis of the distributed FE-KF, is that of guaranteeing convergence of the estimates. The
covariance boosting factor is also necessary in order to compensate for the additional uncertainty associated with the
boundary conditions at the interfaces, i.e., for the uncertainty associated with the estimates

∑
j∈Nm\{m}Amjx̂jq,`−1

and
∑

j∈Nm\{m} Āmjx̂jq,`−2 . In fact, such an uncertainty is not explicitly accounted for in (22) due to the fact that
the correlation between the estimates of neighboring nodes is not precisely known. The interested reader is referred
to [14] for additional insights on this issue in the context of distributed estimation of large-scale interconnected
systems. As in the centralized context, the positive definite matrix Qm accounts for the various uncertainties
and imprecisions (i.e., discretization errors, imprecise knowledge of the exogenous input f and of the boundary
conditions (15)).

B. Numerical stability

As previously shown, in the FE-based implementation the Parallel Schwarz consensus amounts to performing a
hybrid Euler discretization on the interconnection of the N subsystems (16). Hence, as a preliminary analysis step,
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it is important to verify the well-posedness of such a modified discretization method in terms of numerical stability
(i.e., in terms of boundedness and convergence of the time-discretization errors). To this end, it is convenient to
consider the global dynamics of the interconnection.

Let us consider the augmented global state x̃
4
= col{xm, m = 1, . . . , N}, which clearly contains repeated

components of the state due to the overlapping nature of the decomposition. Let the vectors ũ and ε̃ be defined
in a similar way. In terms of x̃ the interconnection of the N subsystems of the form (16) gives rise to a global
augmented system which obeys the following continuous-time linear dynamics

M̃ ˙̃x + S̃ x̃ = ũ + ε̃ (23)

Note that the only difference between (7) and (23) is the presence of duplicated states in the latter linear ODE.
Nevertheless, the two systems originate an identical state evolution. According to the divide-and-conquer strategy,
matrices M̃ and S̃ can be decomposed as

M̃ = M̃D + M̃F (24)

S̃ = S̃D + S̃F (25)

with M̃D = block-diag(M11, . . . ,MNN ), S̃D = block-diag(S11, . . . ,SNN ), whereas M̃F and S̃F take into account
the FE interconnection structure among neighboring subsystems. By substituting (24)-(25) into (23), one obtains

M̃D
˙̃x + S̃D x̃ + M̃F

˙̃x + S̃F x̃ = ũ + ε̃ . (26)

Then, by applying the hybrid Euler time discretization (17), the time-discretized augmented system takes the form

M̃D

(
x̃q,`+1 − x̃q,`

δ

)
+ S̃Dx̃q,`+1 + M̃F

(
x̃q,` − x̃q,`−1

δ

)
+ S̃F x̃q,` = ũq,`+1 + ε̃q,`+1 + τq,` (27)

for ` = 0, . . . , L− 1, where x̃q,`
4
= x̃(tq + `δ), and, as previously, τq,` denotes the time discretization error at time

tq + `δ. Further, the initialization (18) can be simply rewritten as

x̃q,0 = x̃(tq)
x̃q,−1 = x̃(tq)

(28)

The following result can now be stated which summarizes the numerical stability properties2 of (27)-(28).

Theorem 1: The hybrid Euler time-discretization scheme (27)-(28) is consistent with local truncation error of
order 1. Further, it is zero-stable provided that the following condition holds

ρ(M̃−1
D M̃F ) < 1 (29)

where ρ(·) denotes the spectral radius.

Proof: Let D denote the differential operator in the left-hand side of (26), i.e.,

D(ξ, t) = M̃D ξ̇(t) + S̃D ξ(t) + M̃F ξ̇(t) + S̃F ξ(t)

for any smooth time-function ξ. Further, let Dδ denote the discrete-time operator in the left-hand side of (27), i.e.,

Dδ(ξ, t) = M̃D

(
ξ(t+ δ)− ξ(t)

δ

)
+ S̃D ξ(t+ δ)

+ M̃F

(
ξ(t)− ξ(t− δ)

δ

)
+ S̃F ξ(t) .

As well known, the time-discretization scheme (27) is consistent when, for any smooth time-function ξ and for
any time t, Dδ(ξ, t) converges to D(ξ, t) as δ goes to 0. By taking the Taylor expansion of ξ in t, we can write

2The interested reader is referred to chapter 12 of [31] for an introduction on the concepts of consistency, zero-stability, and convergence
of time-discretization methods.
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ξ(t+δ) = ξ(t)+δ ξ̇(t)+δ2 ξ̈(t)+O(δ3) and ξ(t−δ) = ξ(t)−δ ξ̇(t)+δ2 ξ̈(t)+O(δ3). Hence, after some algebra,
we have

Dδ(ξ, t) = D(ξ, t) + M̃D δ ξ̈(t) + S̃D δ ξ̇(t)− M̃F δ ξ̈(t)

+O(δ2)

which shows that the scheme is consistent and the local truncation error has order 1.
In order to study zero-stability, we start by considering the limit for δ going to zero of the time-difference

equation (27), which is given by

M̃D (x̃q,`+1 − x̃q,`) + M̃F (x̃q,` − x̃q,`−1) = 0 . (30)

In fact, zero-stability of the time-discretization scheme (27) corresponds to the asymptotic stability of the discrete-
time system (30). Then the proof can be concluded by noting that, by defining ζq,`+1 = x̃q,`+1− x̃q,`, system (30)
can be rewritten as [

x̃q,`+1

ζq,`+1

]
=

[
I −M̃−1

D M̃F

0 −M̃−1
D M̃F

] [
x̃q,`
ζq,`

]
which is stable if and only if condition (29) holds.

Recall that, in view of the Dahlquist’s Equivalence Theorem, zero-stability is necessary and sufficient for
convergence of a consistent time-discretization scheme [31]. Hence, under condition (29), the hybrid Euler time-
discretization scheme (17) turns out to be convergent. For instance, this means that in each interval [tq, tq+1] the
predicted estimates obtained via the Parallel Schwarz Consensus step (21) converge to the solution of a centralized
prediction equation of the form

M̃ ˙̂x + S̃ x̂ = ũ

as the time-discretization step δ goes to 0, or equivalently as the number L of consensus steps goes to infinity.

Remark 1: Taking into account the particular structure of the FE mass matrix M, which is reflected in the sparse
structure of M̃, the numerical stability condition (29) is usually satisfied in practice (see, for instance, the simulation
example of Section VI). In addition, in the unlikely case in which condition (29) does not hold, it is possible to
modify the hybrid Euler time-discretization scheme (27) (and hence the implementation of the Parallel Schwarz
Consensus) so as to retrieve zero-stability. Specifically, by introducing a suitable scalar ω ∈ (0, 1], one can replace
(27) with

M̃D

(
x̃q,`+1 − (2− ω) x̃q,` + (1− ω) x̃q,`−1

ω δ

)
+ S̃Dx̃q,`+1 + M̃F

(
x̃q,` − x̃q,`−1

δ

)
+ S̃F x̃q,`

= ũq,`+1 + ε̃q,`+1 + τq,` (31)

which is still well-suited for distributed implementation. Notice that such a modified scheme coincides with (27)
for ω = 1. Further, along the lines of Theorem 1, it is possible to show that (31) is consistent for any value of
ω ∈ (0, 1], and zero-stable provided that

ρ(ω M̃−1
D M̃F − (1− ω) I) < 1 . (32)

In turn, since
ρ(ω M̃−1

D M̃F − (1− ω) I) ≤ max{ω ρ(M̃−1
D M̃F ), 1− ω}

for any ω ∈ (0, 1], condition (32) can be always satisfied for suitably small values of ω even when condition (29)
does not hold. The price to be paid for the improved numerical stability is a slow-down of the information spread.
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V. STABILITY ANALYSIS

In this section, the stability of the estimation error dynamics resulting from application of the distributed finite-
element Kalman filter of Algorithm 2 is analyzed by supposing the measurement equation in each domain to be
linear (as it happens when the sensors directly measure the target field like in (10)). Further, in order to simplify
the notation, the interval tq+1 − tq between consecutive measurements is supposed to be constant, so that in each
sampling interval [tq, tq+1) a fixed number L of consensus steps is performed. With this respect, we make the
following assumption.

A2. For each m ∈ N , the local measurement function is linear, i.e., hm(xm) = Cmxm. Further, local observability
holds in the sense that the pair ((Am)L,Cm) is observable for any m ∈ N .

Notice that the observability condition can be satisfied by choosing each subdomain large enough so that a
sufficient number of sensors is included inside.

Let us first rewrite (27) into the state-space form

x̃q,`+1 =
(
M̃D + δS̃D

)−1
M̃D︸ ︷︷ ︸

ÃD

x̃q,`

+
(
M̃D + δS̃D

)−1 (
−δS̃F − M̃F

)
︸ ︷︷ ︸

ÃF

x̃q,`

+
(
M̃D + δS̃D

)−1
M̃F︸ ︷︷ ︸

ĀF

x̃q,`−1

+
(
M̃D + δS̃D

)−1
δ︸ ︷︷ ︸

B̃

ũq,`+1 + w̃q,` (33)

where, clearly, ÃD = block− diag(A1, . . . ,AN ) is the block diagonal matrix of state transition matrices, repre-
senting the N isolated subsystems.

Recalling that, in each interval [tq, tq+1), the recursion (33) is initialized with the initial conditions (28), it can
be easily noticed that at the last consensus step ` = L one obtains

x̃q,L = ÃL
D x̃q,0 + ÃF,Lx̃q,0 + B̃LŨq + D̃LW̃q (34)

where Ũq
4
= col{uq,`, ` = 1, . . . , L}, W̃q

4
= col{wq,`, ` = 1, . . . , L} and B̃L, D̃L, and ÃF,L are suitable

matrices with the latter defining the interconnection couplings between subsystems. Noting that, by definition,
x̃q,L = x̃q+1,0 = x̃(Tq+1∆), the latter equation can be rewritten as

x̃q+1 = ÃL
D x̃q + ÃF,Lx̃q + B̃LŨq + D̃LW̃q (35)

where x̃q
4
= x̃(Tq∆).

Similarly, application of step 3 of Algorithm 2 yields, at the last consensus step ` = L,

x̂q,L = ÃL
D x̂q,0 + ÃF,Lx̂q,0 + B̃LŨq . (36)

where x̂q,`
4
= col{x̂mq,`, m ∈ N}. Further, by defining x̂q|q

4
= col{x̂mq|q, m ∈ N} and x̂q|q−1

4
= col{x̂mq|q−1, m ∈ N},

the global correction step of Algorithm 2 at time tq+1 can be written as

x̂q+1|q+1 = x̂q+1|q + L̃q+1(ỹq+1 − C̃ x̂q+1|q) (37)

where ỹq+1
4
= col{ymq+1, m ∈ N}, L̃q+1 = block− diag(L1

q+1, . . . ,L
N
q+1), and C̃

4
= col{Cm, m ∈ N}.

Recalling that x̂q,L = x̂q+1|q and x̂q,0 = x̂q|q, equations (36) and (37) can be easily combined so as to write
x̂q+1|q+1 as a function of x̂q|q so as to obtain a recursive expression for the global estimate. In addition, noting

that the global output vector can be written as ỹq+1 = C̃x̃q+1 + ṽq+1 with ṽq+1
4
= col{vmq+1, m ∈ N}, we can
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also write a recursive expression for the dynamics of the global estimation error ẽq
4
= col{x̃q − x̂q|q, m ∈ N}.

Specifically, standard calculations yield

ẽq+1 =
(
I− L̃q+1C̃

)(
ÃL
D + ÃF,L

)
ẽq + ν̃q (38)

where the term ν̃q = (I − L̃q+1C̃)D̃LW̃q + ṽq+1 accounts for the time/space discretization errors, for the
measurement noise, and for all the other possible uncertainties.

As for the time evolution of the global covariance matrix P̃q|q
4
= block− diag(P1

q|q, . . . ,P
N
q|q), with similar

reasoning as above it is an easy matter to see that application of Algorithm 2 leads to the following recursion

P̃q+1|q+1 =
(
I− L̃q+1C̃

T
)

P̃q+1|q(
I− L̃q+1C̃

T
) [
γ2LÃL

DP̃q|q(Ã
L
D)T + Φ̃

]
(39)

where Φ̃
4
=
∑L−1

i=0 γ
2iÃi

DQ̃(Ãi
D)T and Q̃

4
= block− diag(Q1, . . . ,QN ).

The following stability result can now be stated.

Theorem 2: Let assumptions A1 and A2 hold and let the matrices Q̃ and R̃
4
= block− diag(R1, . . . ,RN ) be

positive definite. Then, the global covariance matrix asymptotically converges to the the unique positive solution
P̃ of the algebraic Riccati equation

P̃−1 =
[
γ2LÃL

DP̃(ÃL
D)T + Φ̃

]−1
+ C̃T R̃−1 C̃ .

In addition, if the scalar γ is chosen so that

γL >

∥∥∥∥I +
(
ÃL
D

)−1
ÃF,L

∥∥∥∥
P̃

, (40)

where ‖ · ‖M denotes the matrix norm induced by the vector norm ‖x‖M
4
=
√

xTMx, then the dynamics (38) of
the estimation error is exponentially stable.

Proof: Notice first that assumption A2 implies observability of the pair (ÃL
D, C̃) which, as it can be easily verified

through the PBH test, also implies observability of (γLÃL
D, C̃) for any real γ > 0. Then, the convergence of P̃q|q

to P̃ > 0 follows from well known results on discrete-time Kalman filtering, since (39) is the standard Kalman
filter covariance recursion for a linear system with state matrix γLÃL

D and output matrix C̃.
Let now L̃ be the steady-state global Kalman gain associated with the steady-state covariance P̃. With standard

manipulations, it can be seen that L̃ and P̃ satisfy the relationship

P̃ = (I− L̃C̃T )
[
γ2LÃL

DP̃(ÃL
D)T + Φ̃

]
(I− L̃C̃T )T + L̃R̃L̃T

so that
(I− L̃C̃T )

[
γ2LÃL

DP̃(ÃL
D)T

]
(I− L̃C̃T )T ≤ P̃

and, hence, ∥∥∥(I− L̃C̃T )ÃL
D

∥∥∥
P̃
≤ 1/γL . (41)

Notice now that the matrix
(
I− L̃q+1C̃

)(
ÃL
D + ÃF,L

)
, which determines the dynamics of the estimation error,

exponentially converges to
(
I− L̃C̃

)(
ÃL
D + ÃF,L

)
, so that the estimation error dynamics is exponentially stable

if and only if
(
I− L̃C̃

)(
ÃL
D + ÃF,L

)
is Schur stable. Hence, in order to complete the proof, it is sufficient to

observe that ∥∥∥(I− L̃C̃
)(

ÃL
D + ÃF,L

)∥∥∥
P̃

≤
∥∥∥∥(I− L̃C̃

)
ÃL
D

∥∥∥∥
P̃

∥∥∥∥I +
(
ÃL
D

)−1
ÃF,L

∥∥∥∥
P̃

≤
∥∥∥∥I +

(
ÃL
D

)−1
ÃF,L

∥∥∥∥
P̃

/γL
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Fig. 2. Global FE mesh (grid of solid lines) generated over Ω and domain decomposition into 8 overlapping subdomains (dashed polygons).
The position of each sensor is denoted by ∗.

where the latter inequality follows from (41). In fact, this implies that
∥∥∥(I− L̃C̃

)(
ÃL
D + ÃF,L

)∥∥∥
P̃
< 1 whenever

(40) holds.

VI. SIMULATION EXPERIMENTS

This section provides numerical examples and relative results illustrating the effectiveness of the proposed
distributed finite element Kalman filter presented in section IV. Consider the transient heat conduction problem,
introduced in section II as a particular example of (1), in a thin polygonal metal plate with constant, homo-
geneous, and isotropic properties. Assuming the thickness of the slab is considerably smaller than the planar
dimensions, then the temperature can be assumed to be constant along the width direction, and the problem is
reduced to two dimensions. Hence, the diffusion process in a thin plate is modelled by the 2D parabolic PDE
∂x/∂t − λ

(
∂2x/∂ξ2 + ∂2x/∂η2

)
= 0 with boundary condition B(x) = α(ξ, η) ∂x/∂n + β(ξ, η)x such that

α(ξ, η)β(ξ, η) ≥ 0, α(ξ, η)+β(ξ, η) > 0, ∀(ξ, η) ∈ ∂Ω. Notice that, x(ξ, η, t) denotes the temperature as a function
of time t and spatial variables (ξ, η) ∈ Ω, f = 0 stands for no inner heat-generation, whereas λ = 1.11×10−4

[
m2/s

]
is the thermal diffusivity of copper at 25 [◦C] (Table 12, Appendix 2 in [32]), assumed to be constant in time and
space.

A network of S = 23 sensors (Fig. 2) located in the known positions si = [ξi, ηi]
T is assumed to collect point

temperature measurements at regularly time-spaced instants tq = q Ts, with Ts = 100 [s] and standard deviation of
measurement noise σv = 0.1 [K]. The considered sensor network has been chosen to guarantee local observability
(assumption A2).

The MATLAB PDE Toolbox is used to generate the triangular mesh (252 vertices, 436 elements) shown in Fig.
2 of size b = 0.2[m] (defined as the length of the longest edge of the element), over the global 2D domain Ω. Next,
as can be seen from Fig. 2, the domain under consideration is decomposed into N = 8 overlapping subdomains
Ωm, i.e. N = {1, . . . , 8}, each being assigned to a node with local processing and communication capabilities. It is
worth pointing out that domain decomposition comes with an appropriate partitioning of the original global mesh
so that the resulting local grids actually match on the regions of overlap between subdomains.

Domain triangulation allows for a simple construction of basis functions {φj(ξ, η)}nj=1, which are continuous
piecewise polynomial functions, such that their value is unity in vertex j and vanishes at the remaining vertices,
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(b) S̃D: 1632 nonzero elements (red); S̃F : 223 nonzero elements (blue)

Fig. 3. Sparsity pattern of 252× 252 matrix S (a), and 286× 286 matrix S̃ = S̃D + S̃F (b).

i.e.

φj(ξi, ηi) =

{
1 if i = j i, j = 1, 2, ..., n
0 if i 6= j

Here we use continuous piecewise linear functions defined on each element as ψE(ξ, η) = c0 + c1ξ + c2η with
(ξ, η) ∈ E and c0, c1, c2 ∈ IR, so that each function is uniquely determined by its three nodal values xi = ψE(ξi, ηi),
i ∈ E .

Basis functions are used off-line by the FE centralized filter and in the distributed setup for the element-by-
element construction of matrices S and M, introduced in (6). Then, the state dynamics of the centralized filter can
be directly computed, whereas local estimators first need to extract matrices Mmm,Smm and Mmj , Smj in order
to calculate Am,Amj and Āmj which finally provide the finite-dimensional model of temperature evolution in Ωm

through (20). Notice that these matrices are evaluated for a fixed sampling interval δ = Ts/L, where L denotes the
number of consensus iterations Lq introduced in Section IV, here assumed constant in each sampling interval q. For
a fair comparison between centralized and distributed approaches, a constant time integration interval ∆ = 10 [s]
has been chosen for the centralised filter.

Notice that, being {φj(ξ, η)}nj=1 functions with a small support defined by the set of triangles sharing node j,
the resulting mass and stiffness matrices will be sparse, with the same pattern shown in Fig. 3a. In Fig. 3b it can be
seen how the structure of the stiffness matrix changes when considering the augmented system (23). The distributed
pattern of the networked system is highlighted in Fig. 4, where ÃD represents each subsystem as isolated, though
affected by the evolution of neighbors through ÃF .

In the following experiments, both FE filters assume the initial temperature field of the plate uniform at x0(ξ, η) =
300 [K], and the a-priori estimate taken as first guess x̂1|0(ξ, η) = 305 [K], with diagonal covariance P1|0 = 20 I.
Moreover, a zero-mean white noise process has been assumed, with covariance Q = σ2

w I, where σw = 3 [K].
Taking into consideration model uncertainty, the ground truth of the experiments is represented by a real process
simulator implementing a finer mesh (915 vertices, 1695 elements) of size b = 0.1 instead of b = 0.2, running at
a higher sample rate (1Hz), and aware of the possibly time-varying boundary conditions of the system. On the
other hand, both distributed and centralised filters have no knowledge of the real system boundary conditions, so
they simply assume the plate adiabatic on each side.
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Fig. 4. Sparsity pattern of ÃD (red) and ÃF (black).
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Fig. 5. Scenario 1: Comparison of performance of centralised and distributed FE-KF (γ = 1.1).

The performance of the novel distributed FE Kalman filter has been evaluated in terms of Root Mean Square
Error (RMSE) of the estimated temperature field, averaged over a set of about 300 sampling points uniformly
spread within the domain Ω, and 500 independent Monte Carlo realizations.
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Fig. 6. Scenario 1: True and estimated temperature fields at time steps q = 50 (a,b,c) and q = 200 (d,e,f).

Scenario 1

In the first example, transient analysis is performed on a thin adiabatic L-shaped plate (seen in Fig. 2) with a fixed
temperature along the bottom edge. This is a problem with mixed boundary conditions, namely a non-homogeneous
Dirichlet condition on the bottom edge of the plate ∂Ω1, i.e.

x = T1 on ∂Ω1, (42)

where T1 = 315 [K], and natural homogeneous Neumann boundary conditions on the remaining insulated sides
∂Ω2 = ∂Ω \ ∂Ω1, so that

∂x/∂n = 0 on ∂Ω2. (43)

The duration of each Monte Carlo run is fixed to 3 × 104 [s] (300 samples). Fig. 5 illustrates the performance
comparison between centralized (cFE-KF) and distributed (dFE-KF) filters for γ = 1.1 and for three different values
of the parameter L adopted in the distributed framework. First of all, it can be seen that both FE algorithms succeed
in reconstructing the true field of the system based on fixed, point-wise temperature observations. Moreover, the
performance of the distributed FE filters is very close, even for L = 1, to that of the centralized filter, which
collects all the data in a central node. Last but not least, in the distributed setting the RMSE behaviour improves by
increasing the number of consensus steps. This is true for certain values of γ, whereas for others the difference in
performance is considerably reduced, as clearly presented in Fig. 9. Note that the covariance boosting factor used
in (22) is set to γL = L

√
γ, ∀L = 1, 2, 10, in order to obtain a fairly comparable effect of covariance inflation after

L consensus steps for different distributed filters. Further insight on the performance of the proposed FE estimators
is provided in Fig. 6, which shows the true and estimated temperature fields at two different time steps q = 50 and
q = 200, obtained in a single Monte Carlo experiment by using cFE-KF and dFE-KF with L = 10.

Scenario 2

In the second experiment, two time-varying disturbances have been added in order to test the robustness of the
proposed FE estimators in a more challenging scenario. To this end, different boundary conditions are considered.
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Fig. 7. Scenario 2: Comparison of performance of centralised and distributed FE-KF (γ = 1.1).

Fig. 8. Scenario 2: True and estimated temperature fields at time steps q = 350 (a,b,c) and q = 900 (d,e,f).

Specifically, a time-dependent Dirichlet condition (42) with T1 = 310 [K] for time steps q ∈ {0, ..., 299}, and
T2 = 320 [K] for q ∈ {300, ..., 1000}, is set on all nodes of the bottom edge ∂Ω1. The top edge of the plate ∂Ω3
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Fig. 9. Scenario 1: Comparison of the mean value of the RMSE for different values of γ.

is first assumed adiabatic for q ∈ {0, ..., 699}, then the inhomogeneous Robin boundary condition

λ∂x/∂n + ν x = ν xe on ∂Ω3 (44)

is applied for q ∈ {700, ..., 1000}. This models a sudden exposure of the surface to a fluid, fixed at an external
temperature xe = 300 [K], through a uniform and constant convection heat transfer coefficient ν = 10 [W/m2K].
The remaining edges ∂Ω2 where (43) holds, are assumed thermally insulated for the duration of the whole
experiment, lasting 105 [s] (1000 samples).

Performance of the proposed distributed filter has been evaluated for different values of L over 500 independent
Monte Carlo runs and compared to the behavior of the centralized FE Kalman filter. Simulation results, in Fig. 7,
show that the proposed FE estimators provide comparable performance to the centralized filter, moreover the gap
reduces as L increases. It is worth pointing out that the peaks appearing in the RMSE plot, displayed in Fig. 7, are
due to the abrupt changes of the unknown boundary conditions, which cause considerable jumps of the estimation
errors at time steps 300 and 700. Nevertheless, the filters under consideration manage to compensate for the lack of
knowledge and effectively reduce the error, even if, due to persistent and cumulative disturbances on the inferred
field profile, errors do not converge to zero. The original ground truth and the reconstructed fields are depicted in
Fig. 8 for q = 350 and q = 900.

VII. CONCLUSIONS

The paper has dealt with the decentralised estimation of a time-evolving and space-dependent field governed by a
linear partial differential equation, given point-in space measurements of multiple sensors deployed over the area of
interest. The originally infinite-dimensional filtering problem has been approximated into a finite-dimensional large-
scale one via the finite element method and, further, a consensus approach inspired by the parallel Schwarz method
for domain decomposition has allowed to nicely scale the overall problem complexity with respect to the number
of used processing nodes. Combining these two ingredients, a novel computationally efficient consensus finite-
element Kalman filter has been proposed to solve in a decentralized and scalable fashion filtering problems involving
distributed-parameter systems. Both numerical stability of the finite-element approximation and exponential stability
of the proposed consensus finite-element Kalman filter have been analysed. Simulation experiments have been
presented in order to demonstrate the validity of the proposed approach.
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The results of this work can be extended to the estimation of fields governed by more general partial differential
equations and also be applied to the estimation/localization of diffusive sources.
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